Hydrological systems in the Anthropocene have shown substantial shifts from their natural processes due to human modifications. Consequently, deploying coupled human-water modeling is a critical tool to analyze observed changes. However, the development of socio-hydrological models often requires extensive qualitative data collection in the field and analysis. Despite the advances in developing inter-disciplinary methodologies in utilizing qualitative data for coupled human-water modeling, there is a need to identify influential parameters in these systems to inform data collection. Here, we present an exploratory socio-hydrological model to systemically investigate the feedback system of public infrastructure providers, resource users, and the dynamics of water scarcity at the catchment scale to inform data collection and analysis in the field. Specifically, we propose a novel socio-hydrological model by employing and integrating a top-down hydrological model and an extension of Aqua.MORE Model (an Agent-Based Model designed to simulate dynamics of water supply and demand). Specifically, we model alternate behavioral theories of human decision-making to represent the agents" behavior. Then, we perform sensitivity analysis techniques to identify key socio-economic and behavioral parameters affecting emergence patterns in a stylized human-dominated catchment. We apply the proposed methodology to the Lake Mendocino Watershed in Northern California, US. The results will potentially point which parameters are influential and how they could be mapped to a particular interview or survey question. This study will help us to identify features of decision-making behavior for inclusion in fieldwork, that be might be overlooked in the absence of the proposed modeling. We anticipate that the proposed approach also contributes to the current Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) which aims at improving the interpretation of the hydrological processes governing the socio-hydrological systems by focusing on their changing dynamics in connection with rapidly changing human systems.
more »
« less
Investigating uncertainties in human adaptation and their impacts on water scarcity in the Colorado river Basin, United States
The Colorado River Basin (CRB) supports the water supply for seven states and forty million people in the Western United States (US) and has been suffering an extensive drought for more than two decades. As climate change continues to reshape water resources distribution in the CRB, its impact can differ in intensity and location, resulting in variations in human adaptation behaviors. The feedback from human systems in response to the environmental changes and the associated uncertainty is critical to water resources management, especially for water-stressed basins. This paper investigates how human adaptation affects water scarcity uncertainty in the CRB and highlights the uncertainties in human behavior modeling. Our focus is on agricultural water consumption, as approximately 80% of the water consumption in the CRB is used in agriculture. We adopted a coupled agent-based and water resources modeling approach for exploring human-water system dynamics, in which an agent is a human behavior model that simulates a farmer’s water consumption decisions. We examined uncertainties at the system, agent, and parameter levels through uncertainty, clustering, and sensitivity analyses. The uncertainty analysis results suggest that the CRB water system may experience 13 to 30 years of water shortage during the 2019–2060 simulation period, depending on the paths of farmers’ adaptation. The clustering analysis identified three decision-making classes: bold, prudent, and forward-looking, and quantified the probabilities of an agent belonging to each class. The sensitivity analysis results indicated agents whose decision making models require further investigation and the parameters with the higher uncertainty reduction potentials. By conducting numerical experiments with the coupled model, this paper presents quantitative and qualitative information about farmers’ adaptation, water scarcity uncertainties, and future research directions for improving human behavior modeling.
more »
« less
- Award ID(s):
- 1804560
- PAR ID:
- 10333870
- Date Published:
- Journal Name:
- Journal of hydrology
- Volume:
- 612
- ISSN:
- 0022-1694
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Excess agricultural nitrogen (N) in the environment is a persistent problem in the United States and other regions of the world, contributing to water and air pollution, as well as to climate change. Efforts to reduce N from agricultural sources largely rely on voluntary efforts by farmers to reduce inputs and improve uptake by crops. However, research has failed to comprehensively depict farmers' N decision-making processes, particularly when engaging with uncertainty. Through analysis of in-depth interviews with US corn (Zea mays L.) growers, this study reveals how farmers experience and process numerous uncertainties associated with N management, such as weather variability, crop and input price volatility, lack of knowledge about biophysical systems, and the possibility of underapplying or overapplying. Farmers used one of two general decision-making management strategies to address these uncertainties: heuristic-based or data-intensive decision-making. Heuristic-based decision-making involves minimizing sources of uncertainty and reliance on heuristics and personal previous experiences, while data-intensive decision-making is the increased use of field- and farm-scale data collection and management, as well as increased management effort within a given growing season.more » « less
-
Responding to the challenges of societal transformation in the face of climate change, efforts to integrate behaviorally rich models of adaptation decision-making into large-scale macroeconomic and Earth system models are growing and agent-based models (ABMs) are an effective tool for doing so. However, behavioral richness in ABMs has been limited to implementations of single decision models for all agents in a simulated population. The main goals of this study were to: 1) implement the ‘building-block processes’ (BBPs) approach for decision model heterogeneity; 2) demonstrate the application of sensitivity and uncertainty analyses to quantify the scope of structural uncertainty produced by alternative decision models under variable price and climate conditions; and 3) apply the Observing System Simulation Experiment (OSSE) approach to validate such a behaviorally rich BBPs model at the level of individual agent decisions. Using an ABM of agricultural producers’ decision-making, we demonstrated that uncertainty in crop and farm management decisions introduced by heterogeneous decision models was equal to and in some instances greater than that due to variable price or precipitation conditions. Unrealistically rapid or stagnant behavioral dynamics were evident in model versions implementing single decision models for all agents. Moreover, interactions among agents with diverse decision models in the same population produced consistently more accurate outcomes and realistic behavioral dynamics. The BBPs framework and accompanying sensitivity and uncertainty analyses demonstrated here offer a path forward for increasing behavioral richness in ABMs, which is key to understanding processes of adaptation central to societal responses to climate change.more » « less
-
null (Ed.)Growing demand for water resources coupled with climate-driven water scarcity and variability present critical challenges to agriculture in the Western US. Despite extensive resources allocated to downscaling climate projections and advances in understanding past, current, and future climatic conditions, climate information is underutilized in decisions made by agricultural producers. Climate information providers need to understand why this information is underutilized and what would better meet the needs of producers. To better understand how agricultural producers perceive and utilize climate information, we conducted five focus groups with farmers and ranchers across Montana. Focus groups revealed that there are fundamental scalar issues (spatial and temporal) that make climate information challenging for producers to use. While climate information is typically produced at regional, national, or global spatial scales and at a seasonal and mid- to end-of-century temporal scales, producers indicated that decision-making takes place at multiple intermediate and small temporal and spatial scales. In addition, producers described other drivers of decision-making that have little to do with climate information itself, but rather aspects of source credibility, past experience, trust in information, and the politics of climate change. Through engaging directly with end-users, climate information providers can better understand the spatial and temporal scales that align with different types of agricultural producers and decisions, as well as the limitations of information provision given the complexity of the decision context. Increased engagement between climate information providers and end-users can also address the important tradeoffs that exist between scale and uncertainty.more » « less
-
null (Ed.)The nexus of food, energy, and water systems (FEWS) has become a salient research topic, as well as a pressing societal and policy challenge. Computational modeling is a key tool in addressing these challenges, and FEWS modeling as a subfield is now established. However, social dimensions of FEWS nexus issues, such as individual or social learning, technology adoption decisions, and adaptive behaviors, remain relatively underdeveloped in FEWS modeling and research. Agent-based models (ABMs) have received increasing usage recently in efforts to better represent and integrate human behavior into FEWS research. A systematic review identified 29 articles in which at least two food, energy, or water sectors were explicitly considered with an ABM and/or ABM-coupled modeling approach. Agent decision-making and behavior ranged from reactive to active, motivated by primarily economic objectives to multi-criteria in nature, and implemented with individual-based to highly aggregated entities. However, a significant proportion of models did not contain agent interactions, or did not base agent decision-making on existing behavioral theories. Model design choices imposed by data limitations, structural requirements for coupling with other simulation models, or spatial and/or temporal scales of application resulted in agent representations lacking explicit decision-making processes or social interactions. In contrast, several methodological innovations were also noted, which were catalyzed by the challenges associated with developing multi-scale, cross-sector models. Several avenues for future research with ABMs in FEWS research are suggested based on these findings. The reviewed ABM applications represent progress, yet many opportunities for more behaviorally rich agent-based modeling in the FEWS context remain.more » « less