skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Joint Experimental‐Modeling Investigation of the Effect of Light Elements on Dynamos in Small Planets and Moons
Abstract We present a joint experimental‐modeling investigation of core cooling in small terrestrial bodies. Significant amounts of light elements (S, O, Mg, Si) may compose the metallic cores of terrestrial planets and moons. However, the effect of multiple light elements on transport properties, in particular, electrical resistivity and thermal conductivity, is not well constrained. Electrical experiments were conducted at 10 GPa and up to 1850 K on high‐purity powder mixtures in the Fe‐S‐O(±Mg, ±Si) systems using the multianvil apparatus and the four‐electrode technique. The sample compositions contained 5 wt.% S, up to 3 wt.% O, up to 2 wt.% Mg, and up to 1 wt.% Si. We observe that above the eutectic temperature, electrical resistivity is significantly sensitive to the nature and amount of light elements. For each composition, thermal conductivity‐temperature equations were estimated using the experimental electrical results and a modified Wiedemann‐Franz law. These equations were implemented in a thermochemical core cooling model to study the evolution of the dynamo. Modeling results suggest that bulk chemistry significantly affects the entropy available to power dynamo action during core cooling. In the case of Mars, the presence of oxygen would delay the dynamo cessation by up to 1 Gyr compared to an O‐free, Fe‐S core. Models with 3 wt% O can be reconciled with the inferred cessation time of the Martian dynamo if the core‐mantle boundary heat flow falls from >2 TW to ~0.1 TW in the first 0.5 Gyr following core formation.  more » « less
Award ID(s):
2152686
PAR ID:
10589917
Author(s) / Creator(s):
; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Planets
Volume:
125
Issue:
8
ISSN:
2169-9097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electrical resistivity experiments were conducted on three alloys in the iron-rich side of the Fe-Ni(-S) system (Fe-5 wt% Ni, Fe-10 wt% Ni, Fe-10 wt% Ni-5 wt% S) at 4.5 and 8 GPa and up to 1900 K using the multi-anvil apparatus and the 4-electrode technique. For all samples, increasing temperature increases resistivity. At a specified temperature, Fe-Ni(-S) alloys are more resistive than Fe by a factor of about 3. Fe-Ni alloys containing 5 and 10 wt% Ni present comparable electrical resistivity values. The resistivity of Fe-Ni(-S) alloys is comparable to the one of Fe = 5 wt% S at 4.5 GPa and is about three times higher than the resistivity of Fe = 5 wt% S at 8 GPa, due to a different pressure dependence of electrical resistivity between Fe-Ni and Fe-S alloys. Based on these electrical results and experimentally determined thermal conductivity values from the literature, lower and upper bounds of thermal conductivity were calculated. For all Ni-bearing alloys, thermal conductivity estimates range between ~12 and 20 W/(m⋅K) over the considered pressure and temperature ranges. Adiabatic heat fluxes were computed for both Ganymede's core and the Lunar core, and heat flux values suggest a significant dependence to both core composition and the adiabatic temperature. Comparison with previous thermochemical models of the cores of Ganymede and the Moon suggests that some studies may have overestimated the thermal conductivity and hence, the heat flux along the adiabat in these planetary cores. 
    more » « less
  2. Light elements in Earth’s core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron–electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 W⋅m −1 ⋅K −1 for liquid Fe-9Si near the topmost outer core. If Earth’s core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core–mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core–mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core. 
    more » « less
  3. Abstract The motion of liquid iron (Fe) alloy materials in the outer core drives the dynamo, which generates Mercury's magnetic field. The assessment of core models requires laboratory measurements of the melting temperature of Fe alloys at high pressure. Here, we experimentally determined the melting curve of Fe9wt%Si and Fe17wt%Si up to 17 GPa using in situ and ex situ measurements of intermetallic fast diffusion that serves as the melting criterion in a large‐volume press. Our determined melting slopes are comparable with previous studies up to about 17 GPa. However, when extrapolated, our melting slopes significantly deviate from previous studies at higher pressures. For Mercury's core with a model composition of Fe9wt%Si, the melting temperature‐depth profile determined in our study is lower by ∼150–250 K when compared with theoretical calculations. Using the new melting curve of Fe9wt%Si and the electrical resistivity values from a previous study of Fe8.5wt%Si, we estimate that the electronic thermal conductivity of liquid Fe9wt%Si is 30 Wm−1K−1at the Mercury'sCMBpressure of 5 GPa and 37 Wm−1K−1at an assumedICBof 21 GPa, corresponding to heat flux values of 23 mWm−2and 32 mWm−2, respectively. These values provide new constraints on the core models. 
    more » « less
  4. Comparing compositional models of the terrestrial planets provides insights into physicochemical processes that produced planet-scale similarities and differences. The widely accepted compositional model for Mars assumes Mn and more refractory elements are in CI chondrite proportions in the planet, including Fe, Mg, and Si, which along with O make up >90% of the mass of Mars. However, recent improvements in our understandings on the composition of the solar photosphere and meteorites challenge the use of CI chondrite as an analog of Mars. Here we present an alternative model composition for Mars that avoids such an assumption and is based on data from Martian meteorites and spacecraft observations. Our modeling method was previously applied to predict the Earth’s composition. The model establishes the absolute abundances of refractory lithophile elements in the bulk silicate Mars (BSM) at 2.26 times higher than that in CI carbonaceous chondrites. Relative to this chondritic composition, Mars has a systematic depletion in moderately volatile lithophile elements as a function of their condensation temperatures. Given this finding, we constrain the abundances of siderophile and chalcophile elements in the bulkMars and its core. The Martian volatility trend is consistent with <7 wt% S in its core, which is significantly lower than that assumed in most core models (i.e., >10 wt% S). Furthermore, the occurrence of ringwoodite at the Martian core-mantle boundary might have contributed to the partitioning of O and H into the Martian core. 
    more » « less
  5. Abstract Hexagonal close‐packed (hcp) structured Fe‐Ni alloy is believed to be the dominant phase in the Earth's inner core. This phase is expected to contain 4%–5% light elements, such as Si and H. While the effects of individual light element candidates on the equation of state (EoS) of the hcp Fe metal have been studied, their combined effects remain largely unexplored. In this study, we report the equations of state for two hcp‐structured Fe‐Si‐H alloys, namely Fe0.83Si0.17H0.07and Fe0.83Si0.17H0.46, using synchrotron X‐ray diffraction measurements up to 125 GPa at 300 K. These alloys were synthesized by cold compression of Fe‐9wt%Si in either pure H2or Ar‐H2mixture medium in diamond‐anvil cells. The volume increase caused by a H atom in hcp Fe‐Si‐H alloys is approximately eight times greater than that by a Si atom. We used the improved data set to develop a composition‐dependent EoS that covers a wide range of compositions. Our calculated density and bulk sound velocity of hcp Fe‐Si‐H alloys suggest a large trade‐off between Si and H contents in fitting the seismic properties of the inner core. Combining our new EoS with geophysical and geochemical constraints, we propose 1.6–3 wt% Si and 0.15–0.6 wt% H in the Earth's inner core. 
    more » « less