skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative analysis of charge transfer plasmons in silver nanocluster dimers using semiempirical methods
The CTP and BDP modes of Ag nanocluster dimers have been studied using INDO/CIS. INDO/CIS is capable of predicting the emergence of CTP modes and quantifying the CTP character in Ag dimers at low computational cost.  more » « less
Award ID(s):
2011846
PAR ID:
10589936
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
26
Issue:
28
ISSN:
1463-9076
Page Range / eLocation ID:
19138 to 19160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We perform a theoretical investigation of the electronic structure and optical properties of atomic nanowire and nanorod dimers using DFT and TDDFT. In both systems at separation distances larger than 0.75 nm, optical spectra show a single feature that resembles the bonding dipole plasmon (BDP) mode. A configuration interaction (CI) analysis shows that the BDP mode arises from constructive coupling of transitions, whereas the destructive coupling does not produce significant oscillator strength for such separation distances. At shorter separation distances, both constructive and destructive coupling produce oscillator strength due to wave-function overlap, which results in multiple features in the calculated spectra. Our analysis shows that a charge-transfer plasmon (CTP) mode arises from destructive coupling of transitions, whereas the BDP results from constructive coupling of the same transitions at shorter separation distances. Furthermore, the coupling elements between these transitions are shown to depend heavily on the amount of exact Hartree–Fock exchange (HFX) in the functional, which affects the splitting of CTP and BDP modes. With 50% HFX or more, the CTP and BDP modes mainly merge into a single feature in the spectra. These findings suggest that the effects of exact exchange must be assessed during the prediction of CTP modes in plasmonic systems. 
    more » « less
  2. Controlled preparation of structurally precise complex conjugated polymer systems remains to be a major synthetic challenge still to be addressed, and this push is stimulated by the improved device performance as well as unique fundamental characteristics that the well-defined conjugated polymer materials possess. Catalyst-transfer polymerization (CTP) based on Pd-catalyzed Suzuki-Miyaura cross-coupling reaction is currently one of the most promising methods towards achieving such a goal, especially with the recent implementation of N-methyliminodiacetic acid (MIDA) boronates as monomers in CTP. Further expansion and development of practical applications of CTP methods will hinge on a clear mechanistic understanding of both the entire process and the particular steps involved in the catalytic cycle. In this work, we introduced Ag+-mediated Suzuki-Miyaura CTP and demonstrated that presence of Ag+ shifted a key transmetalation step toward the oxo-Pd pathway, leading to direct participation of MIDA-boronates in the transmetalation step and hence in the polymerization process, and resulting in the overall more efficient polymerization. In addition, we found that, under Ag+-mediated conditions, MIDA-boronates can also directly participate in small-molecule cross-coupling reactions. The direct participation of MIDA-boronates in Suzuki-Miyaura cross-coupling has not been envisaged previously and could enable new interesting possibilities to control this reaction both for small-molecule and macromolecular syntheses. In contrast to MIDA-boronates, boronic acid monomers likely undergo transmetalation through an alternative boronate pathway, although they may also be directed to react via the oxo-Pd transmetalation pathway in Ag+-mediated conditions. The interplay between the two transmetalation pathways which are both involved in the catalyst-transfer polymerization, and the opportunity to selectively enhance one of them not only improves mechanistic understanding of Suzuki-Miyaura CTP process but also provides a previously unexplored possibility to gain more effective control over the polymerization to obtain structurally better-defined conjugated polymers. 
    more » « less
  3. Controlled polymerization for the synthesis of structurally precise conjugated polymers remains a challenging problem in polymer chemistry. Catalyst-transfer polymerization (CTP) based on Pd-catalyzed Suzuki-Miyaura cross-coupling is one of the promising approaches toward solving this challenge. Recent introduction of N-methyliminodiacetic acid (MIDA) boronates as monomers for Suzuki-Miyaura CTP has extended this approach towards a broader variety of monomer structures and led to improved control over the polymerization, particularly for heteroaromatic systems (such as thiophenes). Previously, we found that MIDA-boronate monomers polymerization could be facilitated by Ag+-mediated reaction conditions due to shifting the Pd catalytic cycle toward a more efficient oxo-Pd transmetalation pathway where MIDA-boronates could participate in transmetalation directly, without prior hydrolysis to boronic acid. In this work, we continued studying this novel process, and investigated the dual role of the MIDA-boronate functional group in the case of less reactive fluorenyl (and potentially other all-carbon aromatic systems) monomers. With such monomers, MIDA-boronate group enables the controlled polymerization but also produces a hydrolysis byproduct hindering the polymerization. We also investigated the role of Ag+ acting to counteract this hindering effect. Steric bulkiness of the MIDA-boronate functional group may also slow down the Suzuki-Miyaura CTP process. These complications could reduce the synthetic value of MIDA-boronate monomers in Suzuki-Miyaura CTP, although better understanding of these implications and a proper choice of polymerization conditions and catalytic initiators could to some extent mitigate such problems. As part of this work, we also uncovered a "critical length" phenomenon which results in a dual molecular weight distribution of the resulting conjugated polymer, both with MIDA-boronate and boronic acid monomers. This phenomenon could account for the experimentally observed loss of polymerization control beyond formation of the polymer chains of a certain "critical length", even despite the formally "living" nature of the polymer chains. The generality of this phenomenon and whether it is restricted to using Pd catalytic systems based on Buchwald-type phosphine ligands remains to be studied. Overall, these new findings paint a sophisticated picture of the Suzuki-Miyaura CTP process with MIDA-boronate monomers where the mere presence of a Pd center on the polymer chain is not sufficient to sustain the polymerization (even if a chain could be considered "living" in a sense of possessing a Pd center), and the choice of phosphine ligand on the Pd center is an effective tool to overcome the "critical length" restriction. 
    more » « less
  4. The stochastic expression of fewer than 60 clustered protocadherin (cPcdh) isoforms provides diverse identities to individual vertebrate neurons and a molecular basis for self-/nonself-discrimination. cPcdhs form chains mediated by alternating cis and trans interactions between apposed membranes, which has been suggested to signal self-recognition. Such a mechanism requires that cPcdh cis dimers form promiscuously to generate diverse recognition units, and that trans interactions have precise specificity so that isoform mismatches terminate chain growth. However, the extent to which cPcdh interactions fulfill these requirements has not been definitively demonstrated. Here, we report biophysical experiments showing that cPcdh cis interactions are promiscuous, but with preferences favoring formation of heterologous cis dimers. Trans homophilic interactions are remarkably precise, with no evidence for heterophilic interactions between different isoforms. A new C-type cPcdh crystal structure and mutagenesis data help to explain these observations. Overall, the interaction characteristics we report for cPcdhs help explain their function in neuronal self-/nonself-discrimination. 
    more » « less
  5. The ability to directly probe the adsorption configurations of organic regioisomeric molecules, specifically nonplanar isomers, on well-defined substrates holds promise to revolutionize fields dependent on nanoscale processes, such as catalysis, surface science, nanotechnology and modern day electronic applications. Herein, the adsorption configurations and surface sensitive interactions of two nonplanar regioisomer, trans - and cis -tetrakispentafluorophenylporphodilactone ( trans - and cis -H 2 F 20 TPPDL), molecules on (100) surfaces of Ag, Cu and Au were studied and investigated using high resolution scanning tunneling microscopy (STM), combined with ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). Depending on molecule–substrate interactions, similar “phenyl-up” configurations were observed for these molecules on Ag(100) and Au(100), while a “phenyl-flat” configuration was discovered on a Cu(100) surface. With the help of surface selection rules of TERS, we explain the spectral discrepancies recorded on the Ag and Cu substrate. Furthermore, the intermolecular interactions were addressed using STM analysis on these surfaces after the configurations were determined by TERS. This study sheds light on the distinct configurations of regioisomeric porphodilactone systems (at interfaces) for near-infrared (NIR) photosensitizers and molecular electronics in the near future. 
    more » « less