Vibrational strong coupling of molecules to optical cavities based on plasmonic resonances has been explored recently because plasmonic near-fields can provide strong coupling in sub-diffraction limited volumes. Such field localization maximizes coupling strength, which is crucial for modifying the vibrational response of molecules and, thereby, manipulating chemical reactions. Here, we demonstrate an angle-independent plasmonic nanodisk substrate that overcomes limitations of traditional Fabry–Pérot optical cavities because the design can strongly couple with all molecules on the surface of the substrate regardless of molecular orientation. We demonstrate that the plasmonic substrate provides strong coupling with the C=O vibrational stretch of deposited films of PMMA. We also show that the large linewidths of the plasmon resonance allow for simultaneous strong coupling to two, orthogonal water symmetric and asymmetric vibrational modes in a thin film of copper sulfate monohydrate deposited on the substrate surface. A three-coupled-oscillator model is developed to analyze the coupling strength of the plasmon resonance with these two water modes. With precise control over the nanodisk diameter, the plasmon resonance is tuned systematically through the modes, with the Rabi splitting from both modes varying as a function of the plasmon frequency and with strong coupling to both modes achieved simultaneously for a range of diameters. This work may aid further studies into manipulation of the ground-state chemical landscape of molecules by perturbing multiple vibrational modes simultaneously and increasing the coupling strength in sub-diffraction limited volumes.
more »
« less
Understanding plasmon coupling in nanoparticle dimers using molecular orbitals and configuration interaction
We perform a theoretical investigation of the electronic structure and optical properties of atomic nanowire and nanorod dimers using DFT and TDDFT. In both systems at separation distances larger than 0.75 nm, optical spectra show a single feature that resembles the bonding dipole plasmon (BDP) mode. A configuration interaction (CI) analysis shows that the BDP mode arises from constructive coupling of transitions, whereas the destructive coupling does not produce significant oscillator strength for such separation distances. At shorter separation distances, both constructive and destructive coupling produce oscillator strength due to wave-function overlap, which results in multiple features in the calculated spectra. Our analysis shows that a charge-transfer plasmon (CTP) mode arises from destructive coupling of transitions, whereas the BDP results from constructive coupling of the same transitions at shorter separation distances. Furthermore, the coupling elements between these transitions are shown to depend heavily on the amount of exact Hartree–Fock exchange (HFX) in the functional, which affects the splitting of CTP and BDP modes. With 50% HFX or more, the CTP and BDP modes mainly merge into a single feature in the spectra. These findings suggest that the effects of exact exchange must be assessed during the prediction of CTP modes in plasmonic systems.
more »
« less
- Award ID(s):
- 1726332
- PAR ID:
- 10210366
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 21
- Issue:
- 41
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 23065 to 23075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multichannel coupling in hybrid systems makes an attractive testbed not only because of the distinct advantages entailed by each constituent mode but also because the opportunity to leverage interference among the various excitation pathways. Here, via combined analytical calculation and experiment, we demonstrate that the phase of the magnetization precession at the interface of a coupled yttrium iron garnet (YIG)/permalloy (Py) bilayer is collectively controlled by the microwave photon field torque and the interlayer exchange torque, manifesting a coherent, dual-channel excitation scheme that effectively tunes the magneto-optical spectrum. The different torque contributions vary with frequency, external bias field, and type of interlayer coupling between YIG and Py, which further results in destructive or constructive interferences between the two excitation channels, and hence selective suppression or amplification of the hybridized magnon modes.more » « less
-
We present a systematic study of the effect of higher-multipolar order plasmon modes on the spectral response and plasmonic coupling of silver nanoparticle dimers at nanojunction separation and introduce a coupling mechanism. The most prominent plasmonic band within the extinction spectra of coupled resonators is the dipolar coupling band. A detailed calculation of the plasmonic coupling between equivalent particles suggests that the coupling is not limited to the overlap between the main bands of individual particles but can also be affected by the contribution of the higher-order modes in the multipolar region. This requires an appropriate description of the mechanism that goes beyond the general coupling phenomenon introduced as the plasmonic ruler equation in 2007. In the present work, we found that the plasmonic coupling of nearby Ag nanocubes does not only depend on the plasmonic properties of the main band. The results suggest the decay length of the higher-order plasmon mode is more sensitive to changes in the magnitude of the interparticle axis and is a function of the gap size. For cubic particles, the contribution of the higher-order modes becomes significant due to the high density of oscillating dipoles localized on the corners. This gives rise to changes in the decay length of the plasmonic ruler equation. For spherical particles, as the size of the particle increases (i.e., ≥80 nm), the number of dipoles increases, which results in higher dipole–multipole interactions. This exhibits a strong impact on the plasmonic coupling, even at long separation distances (20 nm).more » « less
-
A terahertz (THz) metamaterial consisting of radiative slot antennas and subradiant complementary split-ring resonators exhibits plasmon induced opacity in a narrow spectral range due to the destructive interference between the bright and dark modes of the coupled oscillators. Femtosecond optical excitations instantly quench the mode coupling and plasmon oscillations, injecting photocarriers into the metamaterial. The plasmon resonances in the coupled metamaterial are restored by intense THz pulses in a subpicoseond time scale. The strong THz fields induce intervalley scattering and interband tunneling of the photocarriers and achieve significant reduction of the photocarrier mobility. The ultrafast dynamics of the nonlinear THz interactions reveals intricate interplay between photocarriers and plasmon oscillations. The high-field THz control of the plasmon oscillations implies potential applications to ultrahigh-speed plasmonics.more » « less
An official website of the United States government

