Abstract A conjecture of Erdős states that, for any large primeq, every reduced residue class {(\operatorname{mod}q)}can be represented as a product {p_{1}p_{2}}of two primes {p_{1},p_{2}\leq q}. We establish a ternary version of this conjecture, showing that, for any sufficiently large cube-free integerq, every reduced residue class {(\operatorname{mod}q)}can be written as {p_{1}p_{2}p_{3}}with {p_{1},p_{2},p_{3}\leq q}primes. We also show that, for any {\varepsilon>0}and any sufficiently large integerq, at least {(\frac{2}{3}-\varepsilon)\varphi(q)}reduced residue classes {(\operatorname{mod}q)}can be represented as a product {p_{1}p_{2}}of two primes {p_{1},p_{2}\leq q}.The problems naturally reduce to studying character sums. The main innovation in the paper is the establishment of a multiplicative dense model theorem for character sums over primes in the spirit of the transference principle. In order to deal with possible local obstructions we establish bounds for the logarithmic density of primes in certain unions of cosets of subgroups of {\mathbb{Z}_{q}^{\times}}of small index and study in detail the exceptional case that there exists a quadratic character {\psi~{}(\operatorname{mod}\,q)}such that {\psi(p)=-1}for very many primes {p\leq q}.
more »
« less
Crouzeix's conjecture, compressions of shifts, and classes of nilpotent matrices
Abstract This article studies the level set Crouzeix (LSC) conjecture, which is a weak version of Crouzeix’s conjecture that applies to finite compressions of the shift. Among other results, this article establishes the LSC conjecture for several classes of 3\times 3, 4\times 4, and 5\times 5matrices associated with compressions of the shift via a geometric analysis of their numerical ranges. This study also establishes Crouzeix’s conjecture for several classes of nilpotent matrices whose studies are motivated by related compressions of shifts.
more »
« less
- Award ID(s):
- 2000088
- PAR ID:
- 10590075
- Publisher / Repository:
- De Gruyter Brill
- Date Published:
- Journal Name:
- Concrete Operators
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2299-3282
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Let 𝑋 be a Kähler manifold with semiample canonical bundle K_{X}.It is proved in [W. Jian, Y. Shi and J. Song, A remark on constant scalar curvature Kähler metrics on minimal models,Proc. Amer. Math. Soc.147(2019), 8, 3507–3513] that, for any Kähler class 𝛾, there exists \delta>0such that, for all t\in(0,\delta), there exists a unique cscK metric g_{t}in K_{X}+t\gamma.In this paper, we prove that \{(X,g_{t})\}_{t\in(0,\delta)}have uniformly bounded Kähler potentials, volume forms and diameters.As a consequence, these metric spaces are pre-compact in the Gromov–Hausdorff sense.more » « less
-
Abstract For every d\geq 3, we construct a noncompact smooth 𝑑-dimensional Riemannian manifold with strictly positive sectional curvature without isoperimetric sets for any volume below 1.We construct a similar example also for the relative isoperimetric problem in (unbounded) convex sets in \mathbb{R}^{d}.The examples we construct have nondegenerate asymptotic cone.The dimensional constraint d\geq 3is sharp.Our examples exhibit nonexistence of isoperimetric sets only for small volumes; indeed, in nonnegatively curved spaces with nondegenerate asymptotic cones, isoperimetric sets with large volumes always exist.This is the first instance of noncollapsed nonnegatively curved space without isoperimetric sets.more » « less
-
Abstract Assuming the Riemann Hypothesis, we study negative moments of the Riemann zeta-function and obtain asymptotic formulas in certain ranges of the shift in {\zeta(s)}. For example, integrating {|\zeta(\frac{1}{2}+\alpha+it)|^{-2k}}with respect totfromTto {2T}, we obtain an asymptotic formula when the shift α is roughly bigger than {\frac{1}{\log T}}and {k<\frac{1}{2}}. We also obtain non-trivial upper bounds for much smaller shifts, as long as {\log\frac{1}{\alpha}\ll\log\log T}. This provides partial progress towards a conjecture of Gonek on negative moments of the Riemann zeta-function, and settles the conjecture in certain ranges. As an application, we also obtain an upper bound for the average of the generalized Möbius function.more » « less
-
Abstract We introduce a distributional Jacobian determinant \det DV_{\beta}(Dv)in dimension two for the nonlinear complex gradient V_{\beta}(Dv)=\lvert Dv\rvert^{\beta}(v_{x_{1}},-v_{x_{2}})for any \beta>-1, whenever v\in W^{1\smash{,}2}_{\mathrm{loc}}and \beta\lvert Dv\rvert^{1+\beta}\in W^{1\smash{,}2}_{\mathrm{loc}}.This is new when \beta\neq 0.Given any planar ∞-harmonic function 𝑢, we show that such distributional Jacobian determinant \det DV_{\beta}(Du)is a nonnegative Radon measure with some quantitative local lower and upper bounds.We also give the following two applications. Applying this result with \beta=0, we develop an approach to build up a Liouville theorem, which improves that of Savin.Precisely, if 𝑢 is an ∞-harmonic function in the whole \mathbb{R}^{2}with \liminf_{R\to\infty}\inf_{c\in\mathbb{R}}\frac{1}{R}\barint_{B(0,R)}\lvert u(x)-c\rvert\,dx<\infty,then u=b+a\cdot xfor some b\in\mathbb{R}and a\in\mathbb{R}^{2}.Denoting by u_{p}the 𝑝-harmonic function having the same nonconstant boundary condition as 𝑢, we show that \det DV_{\beta}(Du_{p})\to\det DV_{\beta}(Du)as p\to\inftyin the weak-⋆ sense in the space of Radon measure.Recall that V_{\beta}(Du_{p})is always quasiregular mappings, but V_{\beta}(Du)is not in general.more » « less
An official website of the United States government

