skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measurement of Cross Sections and Momentum Distributions of Proton-Rich Radioactive Isotopes Produced from a 345-MeV/Nucleon 78Kr Beam
Abstract We measured the production cross sections and momentum distributions of proton-rich radioactive isotopes (RIs) whose atomic numbers were 18–37. These isotopes were produced by the projectile fragmentation of a 345-MeV/nucleon $$^{78}$$Kr beam impinged on a 5-mm Be target. The cross sections close to the stability region were reproduced fairly well by the semi-empirical formulas, EPAX3.1a and FRACS1.1. However, these formulas tend to overestimate the cross sections of the RIs near the proton drip line, sometimes by as much as 100-fold. The Abrasion–Ablation model in the LISE$$^{++}$$ package was employed, using different mass table variations, to describe the experimental results in this region. The best agreement was achieved when the Weizsäcker-Skyrme microscopic-macroscopic mass formula (WS4$$_{\mathrm{RBF}}$$) and a version of the nonrelativistic Hartree–Fock–Bogoliubov mass model (HFB22) were used. The momentum distribution was represented well by an asymmetric Gaussian distribution. The width of the high-momentum side of the distribution was reproduced fairly well by the Goldhaber model, whereas the width of the low-momentum side was 1.1 times larger than that of the high-momentum side. Moreover, an exponential-shaped low-momentum tail was observed, which began from a height of approximately 1/100–1/1000 of the momentum peak. The momentum means were not reproduced well by Morrissey’s empirical formula: additional velocity loss to the formula was observed. The yield of $$^{68}$$Br was smaller than the expected yield, as estimated from the yield systematics of its neighboring RIs. Assuming an in-flight decay in the separator, the half-life of $$^{68}$$Br was estimated to be $$105^{+62}_{-25}$$ ns.  more » « less
Award ID(s):
2310078
PAR ID:
10590137
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Progress of Theoretical and Experimental Physics
Volume:
2025
Issue:
5
ISSN:
2050-3911
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study formulates the reduction effects of a sandy berm on irregular wave runup over a dune-berm coast. The numerical experiments by Park and Cox (2016) are closely re-examined to develop an empirical formula describing the variability of reduction effects of a sandy berm over a broad range of conditions. Based on a sequence of regression analyses, the reduction effects are expressed as a reduction factor in terms of normalized berm width, normalized surge level, and wave steepness in deep water. The comparison with the numerical experiments demonstrates that the regression formula can satisfactorily reproduce the variability of the reduction effects over the range of numerical experiments. The analysis of prediction uncertainty demonstrated that the derived formula reproduced the reduction effects observed in the numerical experiments with negligible bias and a 90% confidence interval of approximately ±20% relative error. In addition, conversion formulas between representative runup values based on different statistical definitions are derived to enable consistent comparisons between them. The proposed reduction formula is implemented into three empirical runup models that are applicable to the quick estimations of irregular wave runup on a dune-berm coast: the models by Park and Cox (2016), Stockdon et al. (2006), and Mase et al. (2013). Consistent comparisons were conducted among the empirical predictions and numerical experiments based on the statistical conversion formulas. Combined with the proposed reduction formula, all three models well reproduced the normalized 2% runup in the numerical experiments over a wide range of conditions. On the other hand, the uncertainty in the runup prediction appeared in different forms depending on the selected model. When the proposed reduction formula was implemented in the modified Park and Cox (2016) and modified Stockdon et al. (2006) models, the uncertainty was described by a log-normal distribution of the error ratio between the empirical predictions and numerical experiments. Quantitatively, these two models predicted 90% of the normalized runup on a dune within a range of relative error of less than approximately 20–30%. When the proposed reduction formula was combined with the model by Mase et al. (2013), the uncertainty followed a normal distribution of the residual error between the empirical predictions and numerical experiments. On the normalized runup, the model prediction indicated a small conservative bias (+0.05) and a root-mean-square error of 0.13. 
    more » « less
  2. The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of Pb 208 nuclei in the ALICE experiment at the Large Hadron Collider are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron zero degree calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral Pb 208 Pb 208 collisions at a center-of-mass energy per nucleon pair s N N = 5.02 TeV . The 0p and 3p cross sections are described by the RELDIS model within their measurement uncertainties, while the 1p and 2p cross sections are underestimated by the model by 17–25%. According to this model, these 0p, 1p, 2p, and 3p cross sections are associated, respectively, with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of Pb 208 . The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes Tl 206 , 205 , 204 . ©2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
  3. A<sc>bstract</sc> Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb−1. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is$${\sigma }_{\text{fid}}={74}\pm {11}{\left({\text{stat}}\right)}_{-4}^{+5}\left({\text{syst}}\right)$$fb, in agreement with the standard model prediction of 67.8 ± 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions. 
    more » « less
  4. The production of 𝜂 and 𝜂′ mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.02 and 13TeV and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16TeV. The studies are performed in center-of-mass (c.m.) rapidity regions 2.5<𝑦c.m.<3.5 (forward rapidity) and −4.0<𝑦c.m.<−3.0 (backward rapidity) defined relative to the proton beam direction. The 𝜂 and 𝜂′ production cross sections are measured differentially as a function of transverse momentum for 1.5<𝑝T<10GeV and 3<𝑝T<10GeV, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for 𝜂 and 𝜂′ mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of 𝜂 mesons are also used to calculate 𝜂/𝜋0 cross-section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as 𝜂 and 𝜂′ meson fragmentation. 
    more » « less
  5. A<sc>bstract</sc> Short-range correlations between charged particles are studied via two-particle angular correlations in pp collisions at$$ \sqrt{s} $$ s = 13 TeV. The correlation functions are measured as a function of the relative azimuthal angle ∆φand the pseudorapidity separation ∆ηfor pairs of primary charged particles within the pseudorapidity interval |η|<0.9 and the transverse-momentum range 1< pT<8 GeV/c. Near-side (|∆φ|<1.3) peak widths are extracted from a generalised Gaussian fitted over the correlations in full pseudorapidity separation (|∆η|<1.8), while the per-trigger associated near-side yields are extracted for the short-range correlations (|∆η|<1.3). Both are evaluated as a function of charged-particle multiplicity obtained by two different event activity estimators. The width of the near-side peak decreases with increasing multiplicity, and this trend is reproduced qualitatively by the Monte Carlo event generators PYTHIA 8, AMPT, and EPOS. However, the models overestimate the width in the low transverse-momentum region (pT<3 GeV/c). The per-trigger associated near-side yield increases with increasing multiplicity. Although this trend is also captured qualitatively by the considered event generators, the yield is mostly overestimated by the models in the considered kinematic range. The measurement of the shape and yield of the short-range correlation peak can help us understand the interplay between jet fragmentation and event activity, quantify the narrowing trend of the near-side peak as a function of transverse momentum and multiplicity selections in pp collisions, and search for final-state jet modification in small collision systems. 
    more » « less