Nonreciprocal interactions fueled by local energy consumption can be found in biological and synthetic active matter at scales where viscoelastic forces are important. Such systems can be described by “odd” viscoelasticity, which assumes fewer material symmetries than traditional theories. Here we study odd viscoelasticity analytically and using lattice Boltzmann simulations. We identify a pattern-forming instability which produces an oscillating array of fluid vortices, and we elucidate which features govern the growth rate, wavelength, and saturation of the vortices. Our observation of pattern formation through odd mechanical response can inform models of biological patterning and guide engineering of odd dynamics in soft active matter systems. Published by the American Physical Society2024
more »
« less
Measurement of pressure gradients near the interface in the viscous fingering instability
The viscous fingering instability, which forms when a less-viscous fluid invades a more-viscous one within a confined geometry, is an iconic system for studying pattern formation. For both miscible and immiscible fluid pairs the growth dynamics change after the initial instability onset and the global structures, typical of late-time growth, are governed by the viscosity ratio. Here we introduce an experimental technique to measure flow throughout the inner and outer fluids. This probes the existence of a new length scale associated with the local pressure gradients around the interface and allows us to compare our results to the predictions of a previously proposed model for late-time finger growth. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2011854
- PAR ID:
- 10590193
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Fluids
- Volume:
- 9
- Issue:
- 5
- ISSN:
- 2469-990X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper is associated with a poster winner of a 2023 American Physical Society's Division of Fluid Dynamics (DFD) Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available online at the Gallery of Fluid Motion, . Published by the American Physical Society2024more » « less
-
We investigate the steady state of an ellipsoidal active nematic shell using experiments and numerical simulations. We create the shells by coating microsized ellipsoidal droplets with a protein-based active cytoskeletal gel, thus obtaining ellipsoidal core-shell structures. This system provides the appropriate conditions of confinement and geometry to investigate the impact of nonuniform curvature on an orderly active nematic fluid that features the minimum number of defects required by topology. We identify new time-dependent states where topological defects periodically oscillate between translational and rotational regimes, resulting in the spontaneous emergence of chirality. Our simulations of active nematohydrodynamics demonstrate that, beyond topology and activity, the dynamics of the active material are profoundly influenced by the local curvature and viscous anisotropy of the underlying droplet, as well as by external hydrodynamic forces stemming from the self-sustained rotational motion of defects. These results illustrate how the incorporation of curvature gradients into active nematic shells orchestrates remarkable spatiotemporal patterns, offering new insights into biological processes and providing compelling prospects for designing bioinspired micromachines. Published by the American Physical Society2024more » « less
-
We demonstrate analytically, numerically, and experimentally that a 2D supercrystal (SC)—an elastic structure of solid rods with two distinct spatial periods embedded in a viscous fluid—exhibits very high acoustic absorption. Smaller diameter rods arranged in a 2D lattice with a smaller period serve as an effective medium with high viscosity for a set of larger rods arranged in a lattice of much larger period. The enhancement of acoustic absorption is due to strong viscous friction within a narrow layer with high gradients of velocity formed around each scatterer. The SC as a whole is considered in the homogenization limit of frequencies where it behaves as a metafluid with an effective speed of sound and effective viscosity. Analytical results for the effective parameters are calculated for any Bravais lattices and arbitrary cross-sections of the rods. Experimental measurements of acoustic absorption in a supercrystal with hexagonal lattices for both types of rods are in a good agreement with analytical and numerical results. Published by the American Physical Society2024more » « less
An official website of the United States government

