Abstract Two‐dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS2exhibit exceptionally strong nonlinear optical responses, while nanoscale control of the amplitude, polar orientation, and phase of the nonlinear light in TMDCs remains challenging. In this work, by interfacing monolayer MoS2with epitaxial PbZr0.2Ti0.8O3(PZT) thin films and free‐standing PZT membranes, the amplitude and polarization of the second harmonic generation (SHG) signal are modulated via ferroelectric domain patterning, which demonstrates that PZT membranes can lead to in‐operando programming of nonlinear light polarization. The interfacial coupling of the MoS2polar axis with either the out‐of‐plane polar domains of PZT or the in‐plane polarization of domain walls tailors the SHG light polarization into different patterns with distinct symmetries, which are modeled via nonlinear electromagnetic theory. This study provides a new material platform that enables reconfigurable design of light polarization at the nanoscale, paving the path for developing novel optical information processing, smart light modulators, and integrated photonic circuits. 
                        more » 
                        « less   
                    
                            
                            Electronic structure orientation as a map of in-plane antiferroelectricity in β′-In 2 Se 3
                        
                    
    
            Antiferroelectric (AFE) materials are excellent candidates for sensors, capacitors, and data storage due to their electrical switchability and high-energy storage capacity. However, imaging the nanoscale landscape of AFE domains is notoriously inaccessible, which has hindered development and intentional tuning of AFE materials. Here, we demonstrate that polarization-dependent photoemission electron microscopy can resolve the arrangement and orientation of in-plane AFE domains on the nanoscale, despite the absence of a net lattice polarization. Through direct determination of electronic transition orientations and analysis of domain boundary constraints, we establish that antiferroelectricity in β′-In2Se3is a robust property from the scale of tens of nanometers to tens of micrometers. Ultimately, the method for imaging AFE domain organization presented here opens the door to investigations of the influence of domain formation and orientation on charge transport and dynamics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2011854
- PAR ID:
- 10590256
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 24
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ferroelectric domain walls, topological entities separating domains of uniform polarization, are promising candidates as active elements for nanoscale memories. In such applications, controlled nucleation and stabilization of domain walls are critical. Here, using in situ transmission electron microscopy and phase‐field simulations, a controlled nucleation of vertically oriented 109° domain walls in (110)‐oriented BiFeO3(BFO) thin films is reported. In the switching experiment, reversed domains that are nucleated preferentially at the nanoscale edges of the “crest and sag” pattern‐like electrode under external bias subsequently grow into a stable stripe configuration. In addition, when triangular pockets (with an in‐plane polarization component) are present, these domain walls are pinned to form stable flux‐closure domains. Phase field simulations show that i) field enhancement at the edges of the electrode causes site‐specific domain nucleation, and ii) the local electrostatics at the domain walls drives the formation of flux closure domains, thus stabilizing the striped pattern, irrespective of the initial configuration. The results demonstrate how flux closure pinning can be exploited in conjunction with electrode patterning and substrate orientation to achieve a desired topological defect configuration. These insights constitute critical advancements in exploiting domain walls in next generation ferroelectronic devices.more » « less
- 
            Abstract The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls. We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO3. We have directly resolved the atomic structure of a sharp antiphase boundary (APB) in YbFeO3thin films using a combination of aberration-corrected scanning transmission electron microscopy (STEM) and total energy calculations based on density-functional theory (DFT). We find the presence of a layer of FeO6octahedra at the APB that bridges the adjacent domains. STEM imaging shows a reversal in the direction of polarization on moving across the APB, which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO6octahedral layer at the APB. Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains.more » « less
- 
            Abstract Ferroelectric materials exhibit spontaneous polarization that can be switched by electric field. Beyond traditional applications as nonvolatile capacitive elements, the interplay between polarization and electronic transport in ferroelectric thin films has enabled a path to neuromorphic device applications involving resistive switching. A fundamental challenge, however, is that finite electronic conductivity may introduce considerable power dissipation and perhaps destabilize ferroelectricity itself. Here, tunable microwave frequency electronic response of domain walls injected into ferroelectric lead zirconate titanate (PbZr0.2Ti0.8O3) on the level of a single nanodomain is revealed. Tunable microwave response is detected through first‐order reversal curve spectroscopy combined with scanning microwave impedance microscopy measurements taken near 3 GHz. Contributions of film interfaces to the measured AC conduction through subtractive milling, where the film exhibited improved conduction properties after removal of surface layers, are investigated. Using statistical analysis and finite element modeling, we inferred that the mechanism of tunable microwave conductance is the variable area of the domain wall in the switching volume. These observations open the possibilities for ferroelectric memristors or volatile resistive switches, localized to several tens of nanometers and operating according to well‐defined dynamics under an applied field.more » « less
- 
            Abstract One of the general features of ferroelectric systems is a complex nature of polarization reversal, which involves domain nucleation and motion of domain walls. Here, time‐resolved nanoscale domain imaging is applied in conjunction with the integral switching current measurements to investigate the mechanism of polarization reversal in yttrium‐doped HfO2(Y:HfO2)—currently one of the most actively studied ferroelectric systems. More specifically, the effect of film microstructure on the nucleation process is investigated by performing a comparative study of the polarization switching behavior in the epitaxial and polycrystalline Y:HfO2thin film capacitors. It is found that although the epitaxial Y:HfO2capacitors tend to switch slower than their polycrystalline counterparts, they exhibit a significantly higher nucleation density and rate, suggesting that this is a rate‐limiting mechanism. In addition, it is observed that under the external fields approaching the activation field value, the switching kinetics can be described equally well by the nucleation limited switching and the Kolmogorov‐Avrami‐Ishibashi models for both types of capacitors. This signifies convergence of two different mechanisms implying that the polarization reversal proceeds via a homogeneous nucleation process unaffected by the film microstructure, which can be considered as approaching the intrinsic switching limit.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    