skip to main content


Title: Controlled Nucleation and Stabilization of Ferroelectric Domain Wall Patterns in Epitaxial (110) Bismuth Ferrite Heterostructures
Abstract

Ferroelectric domain walls, topological entities separating domains of uniform polarization, are promising candidates as active elements for nanoscale memories. In such applications, controlled nucleation and stabilization of domain walls are critical. Here, using in situ transmission electron microscopy and phase‐field simulations, a controlled nucleation of vertically oriented 109° domain walls in (110)‐oriented BiFeO3(BFO) thin films is reported. In the switching experiment, reversed domains that are nucleated preferentially at the nanoscale edges of the “crest and sag” pattern‐like electrode under external bias subsequently grow into a stable stripe configuration. In addition, when triangular pockets (with an in‐plane polarization component) are present, these domain walls are pinned to form stable flux‐closure domains. Phase field simulations show that i) field enhancement at the edges of the electrode causes site‐specific domain nucleation, and ii) the local electrostatics at the domain walls drives the formation of flux closure domains, thus stabilizing the striped pattern, irrespective of the initial configuration. The results demonstrate how flux closure pinning can be exploited in conjunction with electrode patterning and substrate orientation to achieve a desired topological defect configuration. These insights constitute critical advancements in exploiting domain walls in next generation ferroelectronic devices.

 
more » « less
Award ID(s):
1744213
NSF-PAR ID:
10452368
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
48
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Observation of a new type of nanoscale ferroelectric domains, termed as “bubble domains”—laterally confined spheroids of sub‐10 nm size with local dipoles self‐aligned in a direction opposite to the macroscopic polarization of a surrounding ferroelectric matrix—is reported. The bubble domains appear in ultrathin epitaxial PbZr0.2Ti0.8O3/SrTiO3/PbZr0.2Ti0.8O3ferroelectric sandwich structures due to the interplay between charge and lattice degrees of freedom. The existence of the bubble domains is revealed by high‐resolution piezoresponse force microscopy (PFM), and is corroborated by aberration‐corrected atomic‐resolution scanning transmission electron microscopy mapping of the polarization displacements. An incommensurate phase and symmetry breaking is found within these domains resulting in local polarization rotation and hence impart a mixed Néel–Bloch‐like character to the bubble domain walls. PFM hysteresis loops for the bubble domains reveal that they undergo an irreversible phase transition to cylindrical domains under the electric field, accompanied by a transient rise in the electromechanical response. The observations are in agreement with ab‐initio‐based calculations, which reveal a very narrow window of electrical and elastic parameters that allow the existence of bubble domains. The findings highlight the richness of polar topologies possible in ultrathin ferroelectric structures and bring forward the prospect of emergent functionalities due to topological transitions.

     
    more » « less
  2. Abstract

    Ferroelectric domain walls provide a fertile environment for novel materials physics. If a polarization discontinuity arises, it can drive a redistribution of electronic carriers and changes in band structure, which often result in emergent 2D conductivity. If such a discontinuity is not tolerated, then its amelioration usually involves the formation of complex topological patterns, such as flux‐closure domains, dipolar vortices, skyrmions, merons, or Hopfions. The degrees of freedom required for the development of such patterns, in which dipolar rotation is a hallmark, are readily found in multiaxial ferroelectrics. In uniaxial ferroelectrics, where only two opposite polar orientations are possible, it has been assumed that discontinuities are unavoidable when antiparallel components of polarization meet. This perception has been borne out by the appearance of charged conducting domain walls in systems such as hexagonal manganites and lithium niobate. Here, experimental and theoretical investigations on lead germanate (Pb5Ge3O11) reveal that polar discontinuities can be obviated at head‐to‐head and tail‐to‐tail domain walls by mutual domain bifurcation along two different axes, creating a characteristic saddle‐point domain wall morphology and associated novel dipolar topology, removing the need for screening charge accumulation and associated conductivity enhancement.

     
    more » « less
  3. Since 2011, ferroelectric HfO2has attracted growing interest in both fundamental and application oriented groups. In this material, noteworthy wake‐up and fatigue effects alter the shape of the polarization hysteresis loop during field cycling. Such changes are problematic for application of HfO2to ferroelectric memories, which require stable polarization hystereses. Herein, electrical and structural techniques are implemented to unveil how cyclic switching changes nanoscale film structure, which modifies the polarization hysteresis. Impedance spectroscopy and scanning transmission electron microscopy identify regions with different dielectric and conductive properties in films at different cycling stages, enabling development of a structural model to explain the wake‐up and fatigue phenomena. The wake‐up regime arises due to changes in bulk and interfacial structuring: the bulk undergoes a phase transformation from monoclinic to orthorhombic grains, and the interfaces show changes in and diminishment of a nonuniform, defect rich, tetragonal HfO2layer near the electrodes. The evolution of these aspects of structuring contributes to the increase inPrand the opening of the constrictedPVhysteresis that are known to occur with wake‐up. The onset of the fatigue regime is correlated to an increasing concentration of bulk defects, which are proposed to pin domain walls.

     
    more » « less
  4. Abstract

    Ferroelectric nanotubes offer intriguing opportunities for stabilizing exotic polarization domains and achieving new or enhanced functionalities by tailoring the complex interplay among the geometry, surface effects, crystal symmetry, and more. Here, phase‐field simulations to predict the room‐temperature equilibrium polarization domain structure in (001)pcPbZr0.52Ti0.48O3(PZT) nanotubes are used (pseudocubic (pc)). The simulations incorporate the influence of surface‐tension‐induced strains, which have been ignored in existing computational studies. It is found that (001)pcPZT nanotubes can host a unique class of topological polarization domain structures comprising non‐planar flux‐closures and anti‐flux‐closures that are inaccessible with ferroelectrics of planar geometry (e.g., thin‐films, nanodots). It is shown that surface‐tension‐induced strain is significantly enhanced in thin‐walled nanotubes and thereby can lead to noticeable modulation of the flux closures. Domain stability map as a function of the nanotube wall thickness and height is established. The results provide a basis for geometrical engineering of domain structures and associated functional (e.g., piezoelectric, electrocaloric) responses in ferroelectric nanotubes.

     
    more » « less
  5. Abstract

    Application of scanning probe microscopy techniques such as piezoresponse force microscopy (PFM) opens the possibility to re‐visit the ferroelectrics previously studied by the macroscopic electrical testing methods and establish a link between their local nanoscale characteristics and integral response. The nanoscale PFM studies and phase field modeling of the static and dynamic behavior of the domain structure in the well‐known ferroelectric material lead germanate, Pb5Ge3O11, are reported. Several unusual phenomena are revealed: 1) domain formation during the paraelectric‐to‐ferroelectric phase transition, which exhibits an atypical cooling rate dependence; 2) unexpected electrically induced formation of the oblate domains due to the preferential domain walls motion in the directions perpendicular to the polar axis, contrary to the typical domain growth behavior observed so far; 3) absence of the bound charges at the 180° head‐to‐head (H–H) and tail‐totail (T–T) domain walls, which typically exhibit a significant charge density in other ferroelectrics due to the polarization discontinuity. This strikingly different behavior is rationalized by the phase field modeling of the dynamics of uncharged H–H and T–T domain walls. The results provide a new insight into the emergent physics of the ferroelectric domain boundaries, revealing unusual properties not exhibited by conventional Ising‐type walls.

     
    more » « less