skip to main content


This content will become publicly available on August 15, 2024

Title: Balancing ring and stopper group size to control the stability of doubly threaded [3]rotaxanes
Synthesizing doubly threaded [3]rotaxanes requires the use of larger rings than more traditional singly threaded [2]rotaxanes. A key challenge in accessing stable doubly threaded [3]rotaxanes with large rings is finding the right combination of ring to stopper size. In this study, a series of doubly threaded [3]rotaxanes derived from five different sized macrocycles in the size range of 40–48 atoms and two different stopper groups, which contain 1 or 2 tris(p-t-butylbiphenyl)methyl moieties, were prepared and their kinetic stability examined. These interlocked compounds were synthesized using a metal-templated approach and fully characterized utilizing a combination of mass spectrometry, NMR spectroscopy, and size-exclusion chromatography techniques. The effect of ring size on the stability of the doubly threaded [3]rotaxane was investigated via kinetic stability tests monitored using 1H-NMR spectroscopy. By tightening the macrocycle systematically every 2 atoms from 48 to 40 atoms, a wide range of doubly threaded interlocked molecules could be accessed in which the rate of room temperature slippage of the macrocycle from the dumbbells could be tuned. Using the larger stopper group with a 48-atom ring results in no observable rotaxane, 46–44 atom macrocycles result in metastable rotaxane species with a slippage half-life of ∼5 weeks and ∼9 weeks, respectively, while macrocycles of 42 atoms or smaller yield a stable rotaxane. The smaller sized stopper is not able to fully stabilize any of the [3]rotaxane structures but metastable [3]rotaxanes are obtained with slippage half-lives of 25 ± 2 hours and 13 ± 1 days using macrocycles with 42 or 40 atoms, respectively. These results highlight the dramatic effect that relatively small ring size changes can have on the structure of doubly threaded [3]rotaxanes and lay the synthetic groundwork for a range of higher order doubly threaded interlocked architectures.  more » « less
Award ID(s):
1903603 2011854 2304633
NSF-PAR ID:
10448580
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Organic & Biomolecular Chemistry
ISSN:
1477-0520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ring size is a critically important parameter in many interlocked molecules as it directly impacts many of the unique molecular motions that they exhibit. Reported herein are studies using one of the largest macrocycles reported to date to synthesize doubly threaded [3]rotaxanes. A large ditopic 46 atom macrocycle containing two 2,6-bis( N -alkyl-benzimidazolyl)pyridine ligands has been used to synthesize several metastable doubly threaded [3]rotaxanes in high yield (65–75% isolated) via metal templating. Macrocycle and linear thread components were synthesized and self-assembled upon addition of iron( ii ) ions to form the doubly threaded pseudo[3]rotaxanes that could be subsequently stoppered using azide–alkyne cycloaddition chemistry. Following demetallation with base, these doubly threaded [3]rotaxanes were fully characterized utilizing a variety of NMR spectroscopy, mass spectrometry, size-exclusion chromatography, and all-atom simulation techniques. Critical to the success of accessing a metastable [3]rotaxane with such a large macrocycle was the nature of the stopper group employed. By varying the size of the stopper group it was possible to access metastable [3]rotaxanes with stabilities in deuterated chloroform ranging from a half-life of <1 minute to ca. 6 months at room temperature potentially opening the door to interlocked materials with controllable degradation rates. 
    more » « less
  2. Geometric isomerism in mechanically interlocked systems — which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric — can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of synthetic processes forming complex mechanically interlocked molecules. 
    more » « less
  3. Abstract

    A new class of conjugated macrocycle, the cyclo[4]thiophene[4]furan hexyl ester (C4TE4FE), is reported. This cycle consists of alternating α‐linked thiophene‐3‐ester and furan‐3‐ester repeat units, and was prepared in a single step using Suzuki–Miyaura cross‐coupling of a 2‐(thiophen‐2‐yl)furan monomer. The ester side groups help promote asynconformation of the heterocycles, which enables formation of the macrocycle. Cyclic voltammetry studies revealed that C4TE4FE could undergo multiple oxidations, so treatment with SbCl5resulted in formation of the [C4TE4FE]2+dication. Computational work, paired with1H NMR spectroscopy of the dication, revealed that the cycle becomes globally aromatic upon 2eoxidation, as the annulene pathway along the outer ring becomes Hückel aromatic. The change in ring current for the cycle upon oxidation was clear from1H NMR spectroscopy, as the protons of the thiophene and furan rings shifted downfield by nearly 6 ppm. This work highlights the potential of sequence control in furan‐based macrocycles to tune electronic properties.

     
    more » « less
  4. 1,3-Bis(6-bromohexyloxy)benzene, 2,7-bis(6-bromohexyloxy)naphthalene, 1,3-bis(4-bromomethylbenzyloxy)benzene, and 1,3-bis(3-bromomethylbenzyloxy)benzene were prepared via Williamson ether synthesis using resorcinol or 2,7-dihydroxynaphthalene and 1,6-dibromohexane, 1,4-bis(bromomethyl)benzene, or 1,3-bis(bromomethyl)benzene (21–47 % yield). These dibromides were condensed with 2,9-bis(4-hydroxyphenyl)-1,10-phenanthroline in the presence of K2CO3 to give the corresponding 31- to 35-membered macrocycles (3a–d, 22–63 % yield). When 3a–d were treated with CuI, mononuclear 1 : 1 complexes formed, in which the CuI chelates to the nitrogen donor atoms of the phenanthroline moiety (4a–d, 40–80 % yield). The crystal structures of 3a–c and 4a–c were determined and analyzed using density functional theory calculations and in the context of rotaxanes that could be formed by treatment of 4a–d with terminal alkynes (e.g. macrocycle dimensions, void volumes). The copper and iodide atoms in 4a–c significantly protrude from the least-squares plane of the phenanthroline moiety (0.46–0.63 Å and 1.65–2.07 Å). 
    more » « less
  5. A bistable [2]pseudorotaxane 1⊂CBPQT·4PF 6 and a bistable [2]rotaxane 2·4PF 6 have been synthesised to measure the height of an electrostatic barrier produced by double molecular oxidation (0 to +2). Both systems have monopyrrolotetrathiafulvalene (MPTTF) and oxyphenylene (OP) as stations for cyclobis(paraquat- p -phenylene) (CBPQT 4+ ). They have a large stopper at one end while the second stopper in 2 4+ is composed of a thioethyl (SEt) group and a thiodiethyleneglycol (TDEG) substituent, whereas in 1⊂CBPQT 4+ , the SEt group has been replaced with a less bulky thiomethyl (SMe) group. This seemingly small difference in the substituents on the MPTTF unit leads to profound changes when comparing the physical properties of the two systems allowing for the first measurement of the deslipping of the CBPQT 4+ ring over an MPTTF 2+ unit in the [2]pseudorotaxane. Cyclic voltammetry and 1 H NMR spectroscopy were used to investigate the switching mechanism for 1⊂CBPQT·MPTTF 4+ and 2·MPTTF 4+ , and it was found that CBPQT 4+ moves first to the OP station producing 1⊂CBPQT·OP 6+ and 2·OP 6+ , respectively, upon oxidation of the MPTTF unit. The kinetics of the complexation/decomplexation process occurring in 1⊂CBPQT·MPTTF 4+ and in 1⊂CBPQT·OP 6+ were studied, allowing the free energy of the transition state when CBPQT 4+ moves across a neutral MPTTF unit (17.0 kcal mol −1 ) or a di-oxidised MPTTF 2+ unit (24.0 kcal mol −1 ) to be determined. These results demonstrate that oxidation of the MPTTF unit to MPTTF 2+ increases the energy barrier that the CBPQT 4+ ring must overcome for decomplexation to occur by 7.0 kcal mol −1 . 
    more » « less