skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data Moves as a Focusing Lens for Learning to Teach with CODAP
Innovative dynamic data tools afford opportunities for K-12 students and teachers to explore multivariate data and create linked data representations. These tools also support engagement in data moves, which are transnumerative actions to process, organize, and visualize data. The current study sought to understand how prospective K-12 mathematics teachers (PMTs) use data moves in the Common Online Data Analysis Platform (CODAP) to create and interpret visualizations and statistical measures to make sense of state-level data about education in the United States. Extending the work of Erickson et al. (Citation2019), a framework is presented to characterize data moves and provide examples of actions within CODAP that illustrate each data move. Based on analysis of thirty screencasts created by PMTs, four examples highlight PMTs’ use of data moves to investigate data in CODAP.  more » « less
Award ID(s):
2141727 2141724 2141716
PAR ID:
10590352
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Taylor & Francis Online
Date Published:
Journal Name:
Computers in the Schools
ISSN:
0738-0569
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    TalkMoves is an innovative application designed to support K-12 mathematics teachers to reflect on, and continuously improve their instructional practices. This application combines state-of-the-art natural language processing capabilities with automated speech recognition to automatically analyze classroom recordings and provide teachers with personalized feedback on their use of specific types of discourse aimed at broadening and deepening classroom conversations about mathematics. These specific discourse strategies are referred to as “talk moves” within the mathematics education community and prior research has documented the ways in which systematic use of these discourse strategies can positively impact student engagement and learning. In this article, we describe the TalkMoves application’s cloud-based infrastructure for managing and processing classroom recordings, and its interface for providing teachers with feedback on their use of talk moves during individual teaching episodes. We present the series of model architectures we developed, and the studies we conducted, to develop our best-performing, transformer-based model (F1 = 79.3%). We also discuss several technical challenges that need to be addressed when working with real-world speech and language data from noisy K-12 classrooms. 
    more » « less
  2. null (Ed.)
    TalkMoves is an innovative application designed to support K-12 mathematics teachers to reflect on, and continuously improve their instructional practices. This application com- bines state-of-the-art natural language processing capabilities with automated speech recognition to automatically analyze classroom recordings and provide teachers with personalized feedback on their use of specific types of discourse aimed at broadening and deepening classroom conversations about mathematics. These specific discourse strategies are referred to as “talk moves” within the mathematics education com- munity and prior research has documented the ways in which systematic use of these discourse strategies can positively impact student engagement and learning. In this article, we describe the TalkMoves application’s cloud-based infrastruc- ture for managing and processing classroom recordings, and its interface for providing teachers with feedback on their use of talk moves during individual teaching episodes. We present the series of model architectures we developed, and the studies we conducted, to develop our best-performing, transformer-based model (F1 = 79.3%). We also discuss sev- eral technical challenges that need to be addressed when working with real-world speech and language data from noisy K-12 classrooms. 
    more » « less
  3. We describe an experience within mathematics teacher preparation that engages pre-service teachers of mathematics (PMTs) in Making and design practices that we hypothesized would inform their conceptual, curricular, and pedagogical thinking. With a focus on the design of new tools that can generate new possibilities for mathematics teaching and learning, this Learning by Design experience has PMTs exploring at the intersection of content, pedagogy, and Making. We describe the forms of knowledge brought to bear on their experiences through a case study analysis of one pair of PMTs’ Making experience. As the advancement of these forms of knowledge is essential to effective mathematics teaching, these findings suggest the promise of a Making experience within mathematics teacher preparation 
    more » « less
  4. null (Ed.)
    This paper focuses on the K-12 educational activities of COSMOS-Cloud enhanced Open Software defined MObile wireless testbed for city-Scale deployment. The COSMOS wireless reasearch testbed is being deployed in West Harlem (New York City) as part of the NSF Platforms for Advanced Wireless Research (PAWR) program. COSMOS' approach for K-12 education is twofold: (i) create an innovative and concrete set of methods/tools that allow teaching STEM subjects using live experiments related to wireless networks/IoT/cloud, and (ii) enhance the professional development (PD) of K-12 teachers and collaborate with them to create hands-on educational material for the students. The COSMOS team has already conducted successful pilot summer programs for middle and high school STEM teachers, where the team worked with the teachers and jointly developed innovative real-world experiments that were organized as automated and repeatable math, science, and computer science labs to be used in the classroom. The labs run on the COSMOS Educational Toolkit, a hardware and software system that offers a large variety of pre-orchestrated K-12 educational labs. The software executes and manages the experiments in the same operational philosophy as the COSMOS testbed. Specifically, since it is designed for use by non-technical middle and high school teachers/students, it adds easy-to-use enhancements to the experiments' execution and the results visualization. The labs are also supported by Next Generation Science Standards (NGSS)-compliant teacher/student material. This paper describes the teachers' PD program, the NGSS lessons created and the hardware and software system developed to support the initiative. Additionally, it provides an evaluation of the PD approach as well as the expected impact to K-12 STEM education. Current limitations and future work are also included as part of the discussion section. 
    more » « less
  5. Kong, S.C. (Ed.)
    This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms. 
    more » « less