Abstract. We analyze tropical ozone (O3) and carbon monoxide (CO) distributions in the upper troposphere (UT) for 2005–2020 using Aura Microwave Limb Sounder (MLS) observations and simulations from the Whole Atmosphere Community Climate Model (WACCM) and two variants of the Community Atmosphere Model with Chemistry (CAM-chem), with each variant using different anthropogenic CO emissions. Trends and variability diagnostics are obtained from multiple linear regression. The MLS zonal mean O3 UT trend for 20° S–20° N is +0.39 ± 0.28 % yr−1; the WACCM and CAM-chem simulations yield similar trends, although the WACCM result is somewhat smaller. Our analyses of gridded MLS data yield positive O3 trends (up to 1.4 % yr−1) over Indonesia and east of that region, as well as over Africa and the Atlantic. These positive mapped O3 trends are generally captured by the simulations but in a more muted way. We find broad similarities (and some differences) between mapped MLS UT O3 trends and corresponding mapped trends of tropospheric column ozone. The MLS zonal mean CO UT trend for 20° S–20° N is −0.25 ± 0.30 % yr−1, while the corresponding CAM-chem trend is 0.0 ± 0.14 % yr−1 when anthropogenic emissions are taken from the Community Emissions Data System (CEDS) version 2. The CAM-chem simulation driven by CAMS-GLOB-ANTv5 emissions yields a tropical mean CO UT trend of 0.22 ± 0.19 % yr−1, in contrast to the slightly negative MLS CO trend. Previously published analyses of total column CO data have shown negative trends. Our tropical composition trend results contribute to continuing international assessments of tropospheric evolution.
more »
« less
Suppression of Transition Metal Dissolution in Mn-Rich Layered Oxide Cathodes with Graphene Nanocomposite Dry Coatings
The growing demand for lithium-ion batteries (LIBs) and the reliance on scarce metals in cathode active materials (CAMs) have prompted a search for sustainable alternatives. However, the performance of Mn-rich CAMs formulated with less Co suffer from transition metal dissolution (TMD). TMD can be suppressed by applying a thin film of carbon or oxide to the CAM but the assumed need for a continuous film necessitates bottom-up coating methods. This has been a challenge for LIB production as well as limiting material choices. Here we show that particulate coatings can also suppress TMD, allowing for scalable, material-independent, dry coating methods. Dry coating the Mn-rich CAM surfaces with graphene encapsulated nanoparticles (GEN) (1 wt%) suppresses TMD while nearly doubling the cycle life and improving rate capacities up to 42% under stressful conditions. The ability to suppress TMD is attributed to the unique chemical and electronic properties of the GEN produced by plasma enhanced chemical vapor deposition. The method is general and could provide a scalable path to CAM with less Co.
more »
« less
- Award ID(s):
- 2011967
- PAR ID:
- 10590415
- Publisher / Repository:
- IOP Publishing Ltd
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 171
- Issue:
- 10
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- 100532
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
film coatings have the potential to drastically improve the accelerating performance of Nb superconducting radiofrequency (SRF) cavities in next-generation linear particle accelerators. Unfortunately, persistent stoichiometric material defects formed during fabrication limit the cryogenic operating temperature and accelerating gradient by nucleating magnetic vortices that lead to premature cavity quenching. The SRF community currently lacks a predictive model that can explain the impact of chemical and morphological properties of defects on vortex nucleation and maximum accelerating gradients. Both experimental and theoretical studies of the material and superconducting properties of the first 100 nm of surfaces are complicated by significant variations in the volume distribution and topography of stoichiometric defects. This work contains a coordinated experimental study with supporting simulations to identify how the observed chemical composition and morphology of certain Sn-rich and Sn-deficient surface defects can impact the SRF performance. films were prepared with varying degrees of stoichiometric defects, and the film surface morphologies were characterized. Both Sn-rich and Sn-deficient regions were identified in these samples. For Sn-rich defects, we focus on elemental Sn islands that are partially embedded into the film. Using finite element simulations of the time-dependent Ginzburg-Landau equations, we estimate vortex nucleation field thresholds at Sn islands of varying size, geometry, and embedment. We find that these islands can lead to significant SRF performance degradation that could not have been predicted from the ensemble stoichiometry alone. For Sn-deficient surfaces, we experimentally identify a periodic nanoscale surface corrugation that likely forms because of extensive Sn loss from the surface. Simulation results show that the surface corrugations contribute to the already substantial drop in the vortex nucleation field of Sn-deficient surfaces. This work provides a systematic approach for future studies to further detail the relationship between experimental growth conditions, stoichiometric defects, geometry, and vortex nucleation. These findings have technical implications that will help guide improvements to fabrication procedures. Our outlined experiment-informed theoretical methods can assist future studies in making additional key insights about stoichiometric defects that will help build the next generation of SRF cavities and support related superconducting materials development efforts. Published by the American Physical Society2024more » « less
-
Abstract Ni‐rich LiNi0.8Co0.1Mn0.1O2(NCM811) has been considered as a promising cathode material for high energy density lithium‐ion batteries. However, it experiences undesirable interfacial side‐reactions with the electrolyte, which lead to a rapid capacity decay. In this work, a homogeneous precipitation method is proposed for forming a uniform silicon dioxide (SiO2) coating on the NCM811 surface. The strong Si−O network provided a stable protective layer between the NCM811 active material and electrolyte to improve the electrochemical stability. As a result, the NCM811@SiO2cathode showed superior cycling stability (84.9 % after 100 cycles at 0.2 C) and rate capability (142.7 mA h g−1at 5 C) compared to the pristine NCM811 cathode (56.6 % after 100 cycles, 127.9 mA h g−1at 5 C). Moreover, the SiO2coating effectively suppressed voltage decay and pulverization of the NCM811 particles during long term cycling. This uniform coating technique offers a viable approach for stabilizing Ni‐rich cathode materials for high‐energy density lithium‐ion batteries.more » « less
-
Abstract Collaborative robots must simultaneously be safe enough to operate in close proximity to human operators and powerful enough to assist users in industrial tasks such as lifting heavy equipment. The requirement for safety necessitates that collaborative robots are designed with low-powered actuators. However, some industrial tasks may require the robot to have high payload capacity and/or long reach. For collaborative robot designs to be successful, they must find ways of addressing these conflicting design requirements. One promising strategy for navigating this tradeoff is through the use of static balancing mechanisms to offset the robot’s self-weight, thus enabling the selection of low-powered actuators. In this paper, we introduce a novel, two degrees-of-freedom static balancing mechanism based on spring-loaded, wire-wrapped cams. We also present an optimization-based cam design method that guarantees the cams stay convex, ensures the springs stay below their extensions limits, and minimizes sensitivity to unmodeled deviations from the nominal spring constant. Additionally, we present a model of the effect of friction between the wire and the cam. Lastly, we show experimentally that the torque generated by the cam mechanism matches the torque predicted in our modeling approach. Our results also suggest that the effects of wire-cam friction are significant for non-circular cams.more » « less
-
Abstract Amorphous carbons can have drastically different physical properties depending on synthetic methods. Among these, hydrogenated diamond-like carbon (HDLC) produced via plasma-enhanced chemical vapor deposition is unique in that it exhibits superlubricity with a coefficient of friction (COF) less than 0.01 in proper environmental conditions. It is known that HDLC undergoes friction-induced graphitization at the shear interface and forms a highly hydrogenated transfer film at the counter-surface sliding against it. In contrast, glassy carbon (GC) produced via pyrolysis of organic precursors rarely exhibits superlubricious behavior even though the graphitic nature probed with Raman spectroscopy is similar to that of the transfer film formed from HDLC. This study addresses this drastic difference in friction of HDLC and GC and identifies key parameters that can be tuned to achieve (nearly) superlubricious behaviors with GC. The factors influencing the superlubricity of amorphous carbon include the composition and structure of the initial carbon coating, which strongly depend on the synthetic method, and the coating failure and transfer film stability, which depend on the surface chemistry of the substrate.more » « less
An official website of the United States government

