skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 18, 2026

Title: Human-centered design and early evaluation of an interface for mobile-manipulator-mediated pediatric occupational therapy
Assistive mobile robots can play an important role in supporting individuals with disabilities. While the field of robot control interfaces for individuals with disabilities is growing, there is little work done on such systems for children end users specifically. Accordingly, we pursued the design of an adapted robot control interface for use in child pediatric occupational therapy (OT). Our target end user, a nine-year-old child with cerebral palsy, leveraged the interface to perform instrumental activities of daily living (e.g., play) with a modern mobile manipulator. We used an iterative design process to adjust and improve the interface via input from the participant’s caregivers and occupational therapist, as well as objective participant performance data. Furthermore, we tested the participant’s ability to utilize our interface by creating two testing cases: a control case (in which our participant performed standard ALD/IADL tasks) and an experimental case (in which our participant performed ADL/IADL practice activities more tailored toward the child). Key insights during the process included the need for sensitivity to taking up space on the child user’s existing power wheelchair, the advantages of integrating technologies familiar to the child (e.g., gaming controls, iPads) in our system design, and the potential value of integrating playful mischief (including playful interactions between the child, their caregivers, and their clinicians) as a part of the playbook for pediatric OT. This work can serve to inform and augment new OT strategies for the marginalized population of young children with disabilities.  more » « less
Award ID(s):
2024950
PAR ID:
10590445
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers in Robotics and AI
Date Published:
Journal Name:
Frontiers in Robotics and AI
Volume:
12
ISSN:
2296-9144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agency is essential to play. As we design conversational agents for early childhood, how might we increase the child-centeredness of our approaches? Giving children agency and control in choosing their agent representations might contribute to the overall playfulness of our designs. In this study with 33 children ages 4–5 years old, we engaged children in a creative storytelling interaction with conversational agents in stuffed animal embodiments. Young children conversed with the stuffed animal agents to tell stories about their creative play, engaging in question and answer conversation from 2 minutes to 24 minutes. We then interviewed the children about their perceptions of the agent’s voice, and their ideas for agent voices, dialogues, and interactions. From babies to robot daddies, we discover three themes from children’s suggestions: Family Voices, Robot Voices, and Character Voices. Additionally, children desire agents who (1) scaffold creative play in addition to storytelling, (2) foster personal, social, and emotional connections, and (3) support children’s agency and control. Across these themes, we recommend design strategies to support the overall playful child-centeredness of conversational agent design. 
    more » « less
  2. We began this project with three goals: (1) engage families in engineering activities, (2) increase the awareness of kids and caregivers as to what engineering is, and (3) increase children’ interest in engineering. We focused on caregivers and home environments because of the important role that at-home experiences with STEM play in triggering interest for many individuals who enter STEM professions. We created and distributed four different kits to families interested in engaging in STEM activities at home. Each kit included a challenge around engineering-related content (e.g., circuits, construction) and contained activity instructions (child) and a facilitation guide (caregivers). However, few instructions were given to caregivers about the expectations of their role while engaging with their children. This paper reports on the findings from family engagement in the Watercolor Bot kit. We sought to explore the roles enacted and behaviors utilized by caregivers as they supported their children during the activity. Our findings add to the conversation about how to define and conceptualize caregiver roles and how the home context/setting influences the types of supports caregivers provide. In contrast to emerging work on caregiver support, we argue that it may be more fruitful to think about the types of support (physical, verbal, content, and managerial) offered rather than defining specific roles (e.g., collaborator, project manager, etc.). We provide implications for designing kits and activities to include specific support for caregivers beyond simply providing project-specific instructions that address caregivers’ needs. 
    more » « less
  3. BackgroundCOVID-19 has severely impacted health in vulnerable demographics. As communities transition back to in-person work, learning, and social activities, pediatric patients who are restricted to their homes due to medical conditions face unprecedented isolation. Prior to the pandemic, it was estimated that each year, over 2.5 million US children remained at home due to medical conditions. Confronting gaps in health and technical resources is central to addressing the challenges faced by children who remain at home. Having children use mobile telemedicine units (telerobots) to interact with their outside environment (eg, school and play, etc) is increasingly recognized for its potential to support children’s development. Additionally, social telerobots are emerging as a novel form of telehealth. A social telerobot is a tele-operated unit with a mobile base, 2-way audio/video capabilities, and some semiautonomous features. ObjectiveIn this paper, we aimed to provide a critical review of studies focused on the use of social telerobots for pediatric populations. MethodsTo examine the evidence on telerobots as a telehealth intervention, we conducted electronic and full-text searches of private and public databases in June 2010. We included studies with the pediatric personal use of interactive telehealth technologies and telerobot studies that explored effects on child development. We excluded telehealth and telerobot studies with adult (aged >18 years) participants. ResultsIn addition to telehealth and telerobot advantages, evidence from the literature suggests 3 promising robot-mediated supports that contribute to optimal child development—belonging, competence, and autonomy. These robot-mediated supports may be leveraged for improved pediatric patient socioemotional development, well-being, and quality-of-life activities that transfer traditional developmental and behavioral experiences from organic local environments to the remote child. ConclusionsThis review contributes to the creation of the first pediatric telehealth taxonomy of care that includes the personal use of telehealth technologies as a compelling form of telehealth care. 
    more » « less
  4. Learning companion robots for young children are increasingly adopted in informal learning environments. Although parents play a pivotal role in their children’s learning, very little is known about how parents prefer to incorporate robots into their children’s learning activities. We developed prototype capabilities for a learning companion robot to deliver educational prompts and responses to parent-child pairs during reading sessions and conducted in-home user studies involving 10 families with children aged 3–5. Our data indicates that parents want to work with robots as collaborators to augment parental activities to foster children’s learning, introducing the notion of parent-robot collaboration. Our findings offer an empirical understanding of the needs and challenges of parent-child interaction in informal learning scenarios and design opportunities for integrating a companion robot into these interactions. We offer insights into how robots might be designed to facilitate parent-robot collaboration, including parenting policies, collaboration patterns, and interaction paradigms. 
    more » « less
  5. Body-machine interfaces, i.e. interfaces that rely on body movements to control external assistive devices, have been proposed as a safe and robust means of achieving movement and mobility; however, how children learn these novel interfaces is poorly understood. Here we characterized the learning of a body-machine interface in young unimpaired adults, two groups of typically developing children (9-year and 12-year olds), and one child with congenital limb deficiency. Participants had to control the end-effector of a robot arm in 2D using movements of the shoulder and torso. Results showed a striking effect of age - children had much greater difficulty in learning the task compared to adults, with a majority of the 9-year old group unable to even complete the task. The 12-year olds also showed poorer task performance compared to adults (as measured by longer movement times and greater path lengths), which were associated with less effective search strategies. The child with congenital limb deficiency showed superior task performance compared to age-matched children, but had qualitatively distinct coordination strategies from the adults. Taken together, these results imply that children have difficulty learning non-intuitive interfaces and that the design of body-machine interfaces should account for these differences in pediatric populations. 
    more » « less