skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The maximality of T in Thompson’s group V
Abstract We show that R. Thompson’s group Tis a maximal subgroup of the group V. The argument provides examples of foundational calculations which arise when expressing elements ofVas products of transpositions of basic clopen sets in the Cantor space $$\mathfrak {C}$$ C more » « less
Award ID(s):
2343739
PAR ID:
10590478
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Archiv der Mathematik
Volume:
125
Issue:
1
ISSN:
0003-889X
Format(s):
Medium: X Size: p. 1-7
Size(s):
p. 1-7
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce partitioned matching games as a suitable model for international kidney exchange programmes, where in each round the total number of available kidney transplants needs to be distributed amongst the participating countries in a “fair” way. A partitioned matching game (N, v) is defined on a graph$$G=(V,E)$$ G = ( V , E ) with an edge weightingwand a partition$$V=V_1 \cup \dots \cup V_n$$ V = V 1 V n . The player set is$$N = \{ 1, \dots , n\}$$ N = { 1 , , n } , and player$$p \in N$$ p N owns the vertices in$$V_p$$ V p . The valuev(S) of a coalition $$S \subseteq N$$ S N is the maximum weight of a matching in the subgraph ofGinduced by the vertices owned by the players in S. If$$|V_p|=1$$ | V p | = 1 for all$$p\in N$$ p N , then we obtain the classical matching game. Let$$c=\max \{|V_p| \; |\; 1\le p\le n\}$$ c = max { | V p | | 1 p n } be the width of (N, v). We prove that checking core non-emptiness is polynomial-time solvable if$$c\le 2$$ c 2 but co--hard if$$c\le 3$$ c 3 . We do this via pinpointing a relationship with the known class ofb-matching games and completing the complexity classification on testing core non-emptiness forb-matching games. With respect to our application, we prove a number of complexity results on choosing, out of possibly many optimal solutions, one that leads to a kidney transplant distribution that is as close as possible to some prescribed fair distribution. 
    more » « less
  2. Abstract Schinzel and Wójcik have shown that for every$$\alpha ,\beta \in \mathbb {Q}^{\times }\hspace{0.55542pt}{\setminus }\hspace{1.111pt}\{\pm 1\}$$ α , β Q × \ { ± 1 } , there are infinitely many primespwhere$$v_p(\alpha )=v_p(\beta )=0$$ v p ( α ) = v p ( β ) = 0 and where$$\alpha $$ α and$$\beta $$ β generate the same multiplicative group modp. We prove a weaker result in the same direction for algebraic numbers$$\alpha , \beta $$ α , β . Let$$\alpha , \beta \in \overline{\mathbb {Q}} ^{\times }$$ α , β Q ¯ × , and suppose$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\alpha )|\ne 1$$ | N Q ( α , β ) / Q ( α ) | 1 and$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\beta )|\ne 1$$ | N Q ( α , β ) / Q ( β ) | 1 . Then for some positive integer$$C = C(\alpha ,\beta )$$ C = C ( α , β ) , there are infinitely many prime idealsPof Equation missing<#comment/>where$$v_P(\alpha )=v_P(\beta )=0$$ v P ( α ) = v P ( β ) = 0 and where the group$$\langle \beta \bmod {P}\rangle $$ β mod P is a subgroup of$$\langle \alpha \bmod {P}\rangle $$ α mod P with$$[\langle \alpha \bmod {P}\rangle \,{:}\, \langle \beta \bmod {P}\rangle ]$$ [ α mod P : β mod P ] dividingC. A key component of the proof is a theorem of Corvaja and Zannier bounding the greatest common divisor of shiftedS-units. 
    more » « less
  3. Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ ρ 0 meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ μ + and$$ \mu ^{-}$$ μ - beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ c 2 $$< W<$$ < W < 17.0 GeV/$$c^2$$ c 2 , 1.0 (GeV/c)$$^2$$ 2 $$< Q^2<$$ < Q 2 < 10.0 (GeV/c)$$^2$$ 2 and 0.01 (GeV/c)$$^2$$ 2 $$< p_{\textrm{T}}^2<$$ < p T 2 < 0.5 (GeV/c)$$^2$$ 2 . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ Q 2 the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ p T the transverse momentum of the$$\rho ^0$$ ρ 0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ γ T V L ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ ρ 0 production. 
    more » « less
  4. Abstract Let$$(h_I)$$ ( h I ) denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ I D , the set of dyadic intervals and$$h_I\otimes h_J$$ h I h J denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ( s , t ) h I ( s ) h J ( t ) ,$$I,J\in \mathcal {D}$$ I , J D . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ V ( δ 2 ) of$$h_I\otimes h_J$$ h I h J ,$$I,J\in \mathcal {D}$$ I , J D . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ L p [ 0 , 1 ] or the Hardy spaces$$H^p[0,1]$$ H p [ 0 , 1 ] ,$$1\le p < \infty $$ 1 p < . We say that$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ D ( h I h J ) = d I , J h I h J , where$$d_{I,J}\in \mathbb {R}$$ d I , J R , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ C : V ( δ 2 ) V ( δ 2 ) given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ C h I h J = h I h J if$$|I|\le |J|$$ | I | | J | , and$$\mathcal {C} h_I\otimes h_J = 0$$ C h I h J = 0 if$$|I| > |J|$$ | I | > | J | , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) , there exist$$\lambda ,\mu \in \mathbb {R}$$ λ , μ R such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ λ C + μ ( Id - C ) approximately 1-projectionally factors through D , i.e., for all$$\eta > 0$$ η > 0 , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ Id ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ A · B = 1 and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ λ C + μ ( Id - C ) - A D B < η . Additionally, if$$\mathcal {C}$$ C is unbounded onX(Y), then$$\lambda = \mu $$ λ = μ and then$${{\,\textrm{Id}\,}}$$ Id either factors throughDor$${{\,\textrm{Id}\,}}-D$$ Id - D
    more » « less
  5. Abstract We develop a new heavy quark transport model, QLBT, to simulate the dynamical propagation of heavy quarks inside the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. Our QLBT model is based on the linear Boltzmann transport (LBT) model with the ideal QGP replaced by a collection of quasi-particles to account for the non-perturbative interactions among quarks and gluons of the hot QGP. The thermal masses of quasi-particles are fitted to the equation of state from lattice QCD simulations using the Bayesian statistical analysis method. Combining QLBT with our advanced hybrid fragmentation-coalescence hadronization approach, we calculate the nuclear modification factor$$R_\mathrm {AA}$$ R AA and the elliptic flow$$v_2$$ v 2 ofDmesons at the Relativistic Heavy-Ion Collider and the Large Hadron Collider. By comparing our QLBT calculation to the experimental data on theDmeson$$R_\mathrm {AA}$$ R AA and$$v_2$$ v 2 , we extract the heavy quark transport parameter$$\hat{q}$$ q ^ and diffusion coefficient$$D_\mathrm {s}$$ D s in the temperature range of$$1-4~T_\mathrm {c}$$ 1 - 4 T c , and compare them with the lattice QCD results and other phenomenological studies. 
    more » « less