skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Soil biodiversity and function under global change
Soil organisms represent the most abundant and diverse organisms on the planet and support almost every ecosystem function we know, and thus impact our daily lives. Some of these impacts have been well-documented, such as the role of soil organisms in regulating soil fertility and carbon sequestration; processes that have direct implications for essential ecosystem services including food security and climate change mitigation. Moreover, soil biodiversity also plays a critical role in supporting other aspects from One Health—the combined health of humans, animals, and the environment—to the conservation of historic structures such as monuments. Unfortunately, soil biodiversity is also highly vulnerable to a growing number of stressors associated with global environmental change. Understanding how and when soil biodiversity supports these functions, and how it will adapt to changing environmental conditions, is crucial for conserving soils and maintaining soil processes for future generations. In this Essay, we discuss the fundamental importance of soil biodiversity for supporting multiple ecosystem services and One Health, and further highlight essential knowledge gaps that need to be addressed to conserve soil biodiversity for the next generations.  more » « less
Award ID(s):
2021898 2120117
PAR ID:
10590633
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
PLOS Biology
Volume:
23
Issue:
3
ISSN:
1545-7885
Page Range / eLocation ID:
e3003093
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schädler, Martin (Ed.)
    Decomposition is an essential ecosystem service driven by interacting biotic and abiotic factors. Increasing temperatures due to climate change can affect soil moisture, soil fauna, and subsequently, decomposition. Understanding how projected climate change scenarios will affect decomposition is of vital importance for predicting nutrient cycling and ecosystem health. In this study, we experimentally addressed the question of how the early stages of decomposition would vary along a gradient of projected climate change scenarios. Given the importance of biodiversity for ecosystem service provisioning, we measured the effect of invertebrate exclusion on red maple ( Acer rubrum ) leaf litter breakdown along a temperature gradient using litterbags in warming chambers over a period of five weeks. Leaf litter decomposed more slowly in the warmer chambers and in the litterbag treatment that minimized invertebrate access. Moreover, increasing air temperature reduced invertebrate abundance and richness, and altered the community composition, independent of exclusion treatment. Using structural equation models, we were able to disentangle the effects of average air temperature on leaf litter loss, finding a direct negative effect of warming on the early stages of decomposition, independent of invertebrate abundance. This result indicates that not only can climate change affect the invertebrate community, but may also directly influence how the remaining organisms interact with their environment and their effectiveness at provisioning ecosystem services. Overall, our study highlights the role of biodiversity in maintaining ecosystem services and contributes to our understanding of how climate change could disrupt nutrient cycling. 
    more » « less
  2. Global biodiversity and ecosystem function are the result of complex networks of interactions and feedbacks between animals and their environments, which in turn are affected by the interactions and feedbacks between animals and the organisms they host. Understanding these complex networks, including the main drivers of and responses to ecological and environmental changes and their global implications, requires adopting a systems-based perspective. We advocate for this approach by characterizing a framework centered around bats, a globally-distributed mammalian order, and their dual roles as both inhabitants of ecosystems and as habitats themselves. Like other organisms, bats interact with habitats by providing ecosystem services that impact the survival and distribution of other species, and may be affected by such factors as land use change, climate change, fluctuations in food availability, and hunting pressure. Habitat conditions (e.g. food availability, temperature, etc.) can affect the physiological condition of individuals, which in turn can affect the prevalence and/or virulence of hosted organisms and potential pathogens (e.g. ectoparasites, bacteria, viruses, fungi, and protozoa). In addition, the interactions among individuals (e.g. co-roosting, migration, etc.) influence the habitat connectivity for their hosted organisms (e.g. opportunities for dispersal). Bats have a unique relationship with infectious disease, both biological and cultural. With this in mind, when applied to bats this framework has special importance to how we understand and apply the One Health concept, whereby healthy natural environments foster both human and animal health, which in turn also promotes healthy environments. By leveraging a hierarchical approach among these different levels of biological organization, we can arrive at a clearer picture of the specific threats facing bats—as well as the risk of pathogen spillover to humans and other domesticated and wild animals generated by disrupting this delicate balance—and identify possible measures to mitigate adverse impacts. Thus, to understand these complex interactions and their implications for conservation, ecosystem health, and human health, we need a new ecological framework that recognizes that changes in habitats not only affect macrofauna and the ecosystem services they provide, but also have the potential to cascade through the diversity and evolution of the organisms they host. This review provides a case study for the application of this framework, which is extensible to other organisms with their own unique relationships with habitats and as habitats. 
    more » « less
  3. Functional genomics is a powerful approach for uncovering molecular mechanisms underlying complex biological processes by linking genetic changes to observable phenotypes. In the context of algal symbiosis, this framework offers significant potential for advancing our understanding of the molecular interactions between marine dinoflagellates and their cnidarian hosts, such as corals—organisms that are foundational to marine ecosystems and biodiversity. As coral bleaching and reef degradation intensify due to environmental stressors, novel strategies are urgently needed to enhance the resilience of these symbiotic partnerships. This opinion piece explores emerging directions in functional genomics as applied to coral–algal symbiosis, with a focus on uncovering the molecular pathways that govern photosynthesis and stress tolerance. We discuss the challenges and opportunities in applying functional genomics to support coral health, improve ecosystem resilience, and inform biotechnological applications in agriculture and medicine. Together, these insights posit the potential for engineered symbioses as a needed focus in mitigating biodiversity loss and supporting sustainable ecosystem management in the face of accelerating environmental change. 
    more » « less
  4. Montane ecosystems are crucial for maintaining global biodiversity and function that sustain life on our planet. Yet, these ecosystems are highly vulnerable to changing temperatures and may undergo critical transitions under ongoing climate change. What we do not know is to what extent montane biodiversity and ecosystem services will respond to local temperature variations in a gradual versus abrupt manner across global environments. To fill this knowledge gap, we conducted a global synthesis, including 4,462 observations from 290 elevation gradients, to investigate how biodiversity (spanning animals and plants) and ecosystem services (including plant production, soil carbon, and fertility) respond to local temperature variations along elevation gradients. We found that nearly one-third of these gradients exhibited abrupt shifts in multiple biodiversity and ecosystem services in response to local variations in temperature along elevation gradients. More specifically, we showed that once a particular local temperature level (~10 °C for mean annual temperature) was reached, even small increases in temperature resulted in dramatic variations in biodiversity and ecosystem services. We further showed that those abrupt shifts in response to local temperature increases were commonly positive for plant and animal diversity, as well as plant production, while soil carbon and fertility more commonly exhibit negative abrupt trends. Our work, based on the most comprehensive empirical evidence available so far, reveals the pervasive abrupt responses of biodiversity and ecosystem services to local temperature variations in montane ecosystems worldwide, highlighting the highly sensitive nature of montane ecosystems in the context of climate change. 
    more » « less
  5. Urbanization is causing soil sealing and ecosystem fragmentation, affecting soil health, biodiversity, and carbon storage potential. While green infrastructure is being promoted to address these challenges, small-scale habitats such as urban crevice soils (UCSs), referred to as soils in the gaps between concrete and asphalt surfaces in heavily urbanized areas, remain overlooked. The aim of this study was to determine whether UCSs are advantageous ecological units that sustain microbiological life and perform ecosystem services. This study quantified soil heterotrophic respiration, microbial biomass carbon (MBC) and nitrogen (MBN), soil organic carbon (SOC) and inorganic carbon (SIC), and total nitrogen (TN) in UCSs (with and without plants), nearby roadside soils, and soils from a switchgrass cropland in an urban farm within the Nashville metropolitan area in Tennessee, USA. On average, UCSs exhibited up to 436.2 %, 59.4 %, 217.6 %, and 266.9 % higher SOC, MBC, MBN, and C/N ratio compared to roadside and switchgrass soils, respectively. UCSs with plants have the highest microbial biomass, highlighting the synergistic role of plant presence in enhancing microbial function. These findings challenge the belief that urban soils are universally degraded and biologically inert, and regard UCSs as dispersed, small-scale contributors to urban ecosystem services. UCSs could serve as scalable, low-cost nature-based solutions that support resilient and sustainable cities amid rapid urbanization and environmental stress. Future studies should evaluate the ecological potential of UCSs as microhabitats for microbial biodiversity conservation, carbon storage, and ecosystem service delivery across various cities of different scales. 
    more » « less