Abstract Fluid injection stimulates seismicity far from active tectonic regions. However, the details of how fluids modify on‐fault stresses and initiate seismic events remain poorly understood. We conducted laboratory experiments using a biaxial loading apparatus with a 3 m saw‐cut granite fault and compared events induced at different levels of background shear stress. Water was injected at 10 mL/min and normal stress was constant at 4 MPa. In all experiments, aseismic slip initiated on the fault near the location of fluid injection and dynamic rupture eventually initiated from within the aseismic slipping patch. When the fault was near critically stressed, seismic slip initiated only seconds after MPa‐level injection pressures were reached and the dynamic rupture propagated beyond the fluid pressure perturbed region. At lower stress levels, dynamic rupture initiated hundreds of seconds later and was limited to regions where aseismic slip had significantly redistributed stress from within the pressurized region to neighboring locked patches. We found that the initiation of slow slip was broadly consistent with a Coulomb failure stress, but that initiation of dynamic rupture required additional criteria to be met. Even high background stress levels required aseismic slip to modify on‐fault stress to meet initiation criteria. We also observed slow slip events prior to dynamic rupture. Overall, our experiments suggest that initial fault stress, relative to fault strength, is a critical factor in determining whether a fluid‐induced rupture will “runaway” or whether a fluid‐induced rupture will remain localized to the fluid pressurized region.
more »
« less
Slow Slip as an Indicator of Fault Stress Criticality
Abstract Fault regions inferred to be slowly slipping are interpreted to accommodate much of tectonic plate motion aseismically and potentially serve as barriers to earthquake rupture. Here, we build on prior work using simulations of earthquake sequences with enhanced dynamic fault weakening to show how fault regions that exhibit decades of steady creep or transient slow‐slip events can be driven to dynamically fail by incoming earthquake ruptures. Following substantial earthquake slip, such regions can be under‐stressed and locked for centuries prior to slowly slipping again. Our simulations illustrate that slow fault slip indicates that a region is sufficiently loaded to be failing about its quasi‐static strength. Hence, if a fault region is susceptible to failing dynamically, then observations of slow slip could serve as an indication that the region is critically stressed and ready to fail in a future earthquake, posing a qualitatively different interpretation of slow slip for seismic hazard.
more »
« less
- Award ID(s):
- 2419373
- PAR ID:
- 10590636
- Publisher / Repository:
- American Geophysical Union Geophysical Research Letters
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 11
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Geophysical and geological studies provide evidence for cyclic changes in fault‐zone pore fluid pressure that synchronize with or at least modulate slip events. A hypothesized explanation is fault valving arising from temporal changes in fault zone permeability. In our study, we investigate how the coupled dynamics of rate and state friction, along‐fault fluid flow, and permeability evolution can produce slow slip events. Permeability decreases with time, and increases with slip. Linear stability analysis shows that steady slip with constant fluid flow along the fault zone is unstable to perturbations, even for velocity‐strengthening friction with no state evolution, if the background flow is sufficiently high. We refer to this instability as the “fault valve instability.” The propagation speed of the fluid pressure and slip pulse, which scales with permeability enhancement, can be much higher than expected from linear pressure diffusion. Two‐dimensional simulations with spatially uniform properties show that the fault valve instability develops into slow slip events, in the form of aseismic slip pulses that propagate in the direction of fluid flow. We also perform earthquake sequence simulations on a megathrust fault, taking into account depth‐dependent frictional and hydrological properties. The simulations produce quasi‐periodic slow slip events from the fault valve instability below the seismogenic zone, in both velocity‐weakening and velocity‐strengthening regions, for a wide range of effective normal stresses. A separation of slow slip events from the seismogenic zone, which is observed in some subduction zones, is reproduced when assuming a fluid sink around the mantle wedge corner.more » « less
-
SUMMARY Earthquakes come in clusters formed of mostly aftershock sequences, swarms and occasional foreshock sequences. This clustering is thought to result either from stress transfer among faults, a process referred to as cascading, or from transient loading by aseismic slip (pre-slip, afterslip or slow slip events). The ETAS statistical model is often used to quantify the fraction of clustering due to stress transfer and to assess the eventual need for aseismic slip to explain foreshocks or swarms. Another popular model of clustering relies on the earthquake nucleation model derived from experimental rate-and-state friction. According to this model, earthquakes cluster because they are time-advanced by the stress change imparted by the mainshock. This model ignores stress interactions among aftershocks and cannot explain foreshocks or swarms in the absence of transient loading. Here, we analyse foreshock, swarm and aftershock sequences resulting from cascades in a Discrete Fault Network model governed by rate-and-state friction. We show that the model produces realistic swarms, foreshocks and aftershocks. The Omori law, characterizing the temporal decay of aftershocks, emerges in all simulations independently of the assumed initial condition. In our simulations, the Omori law results from the earthquake nucleation process due to rate and state friction and from the heterogeneous stress changes due to the coseismic stress transfers. By contrast, the inverse Omori law, which characterizes the accelerating rate of foreshocks, emerges only in the simulations with a dense enough fault system. A high-density complex fault zone favours fault interactions and the emergence of an accelerating sequence of foreshocks. Seismicity catalogues generated with our discrete fault network model can generally be fitted with the ETAS model but with some material differences. In the discrete fault network simulations, fault interactions are weaker in aftershock sequences because they occur in a broader zone of lower fault density and because of the depletion of critically stressed faults. The productivity of the cascading process is, therefore, significantly higher in foreshocks than in aftershocks if fault zone complexity is high. This effect is not captured by the ETAS model of fault interactions. It follows that a foreshock acceleration stronger than expected from ETAS statistics does not necessarily require aseismic slip preceding the mainshock (pre-slip). It can be a manifestation of a cascading process enhanced by the topological properties of the fault network. Similarly, earthquake swarms might not always imply transient loading by aseismic slip, as they can emerge from stress interactions.more » « less
-
Abstract Fault‐damage zones comprise multiscale fracture networks that may slip dynamically and interact with the main fault during earthquake rupture. Using 3D dynamic rupture simulations and scale‐dependent fracture energy, we examine dynamic interactions of more than 800 intersecting multiscale fractures surrounding a listric fault, emulating a major listric fault and its damage zone. We investigate 10 distinct orientations of maximum horizontal stress, probing the conditions necessary for sustained slip within the fracture network or activating the main fault. Additionally, we assess the feasibility of nucleating dynamic rupture earthquake cascades from a distant fracture and investigate the sensitivity of fracture network cascading rupture to the effective normal stress level. We model either pure cascades or main fault rupture with limited off‐fault slip. We find that cascading ruptures within the fracture network are dynamically feasible under certain conditions, including: (a) the fracture energy scales with fracture and fault size, (b) favorable relative pre‐stress of fractures within the ambient stress field, and (c) close proximity of fractures. We find that cascading rupture within the fracture network discourages rupture on the main fault. Our simulations suggest that fractures with favorable relative pre‐stress, embedded within a fault damage zone, may lead to cascading earthquake rupture that shadows main fault slip. We find that such off‐fault events may reach moment magnitudes up toMw ≈ 5.5, comparable to magnitudes that can be otherwise hosted by the main fault. Our findings offer insights into physical processes governing cascading earthquake dynamic rupture within multiscale fracture networks.more » « less
-
Abstract Tectonic faults fail through a spectrum of slip modes, ranging from slow aseismic creep to rapid slip during earthquakes. Understanding the seismic radiation emitted during these slip modes is key for advancing earthquake science and earthquake hazard assessment. In this work, we use laboratory friction experiments instrumented with ultrasonic sensors to document the seismic radiation properties of slow and fast laboratory earthquakes. Stick‐slip experiments were conducted at a constant loading rate of 8 μm/s and the normal stress was systematically increased from 7 to 15 MPa. We produced a full spectrum of slip modes by modulating the loading stiffness in tandem with the fault zone normal stress. Acoustic emission data were recorded continuously at 5 MHz. We demonstrate that the full continuum of slip modes radiate measurable high‐frequency energy between 100 and 500 kHz, including the slowest events that have peak fault slip rates <100 μm/s. The peak amplitude of the high‐frequency time‐domain signals scales systematically with fault slip velocity. Stable sliding experiments further support the connection between fault slip rate and high‐frequency radiation. Experiments demonstrate that the origin of the high‐frequency energy is fundamentally linked to changes in fault slip rate, shear strain, and breaking of contact junctions within the fault gouge. Our results suggest that having measurements close to the fault zone may be key for documenting seismic radiation properties and fully understanding the connection between different slip modes.more » « less
An official website of the United States government

