Generative Adversarial Networks (GANs) have shown stupendous power in generating realistic images to an extend that human eyes are not capable of recognizing them as synthesized. State-of-the-art GAN models are capable of generating realistic and high-quality images, which promise unprecedented opportunities for generating design concepts. Yet, the preliminary experiments reported in this paper shed light on a fundamental limitation of GANs for generative design: lack of novelty and diversity in generated samples. This article conducts a generative design study on a large-scale sneaker dataset based on StyleGAN, a state-of-the-art GAN architecture, to advance the understanding of the performance of these generative models in generating novel and diverse samples (i.e., sneaker images). The findings reveal that although StyleGAN can generate samples with quality and realism, the generated and style-mixed samples highly resemble the training dataset (i.e., existing sneakers). This article aims to provide future research directions and insights for the engineering design community to further realize the untapped potentials of GANs for generative design. 
                        more » 
                        « less   
                    
                            
                            DCG-GAN: design concept generation with generative adversarial networks
                        
                    
    
            Generative adversarial networks (GANs) have recently been proposed as a potentially disruptive approach to generative design due to their remarkable ability to generate visually appealing and realistic samples. Yet, we show that the current generator-discriminator architecture inherently limits the ability of GANs as a design concept generation (DCG) tool. Specifically, we conduct a DCG study on a large-scale dataset based on a GAN architecture to advance the understanding of the performance of these generative models in generating novel and diverse samples. Our findings, derived from a series of comprehensive and objective assessments, reveal that while the traditional GAN architecture can generate realistic samples, the generated and style-mixed samples closely resemble the training dataset, exhibiting significantly low creativity. We propose a new generic architecture for DCG with GANs (DCG-GAN) that enables GAN-based generative processes to be guided by geometric conditions and criteria such as novelty, diversity and desirability. We validate the performance of the DCG-GAN model through a rigorous quantitative assessment procedure and an extensive qualitative assessment involving 89 participants. We conclude by providing several future research directions and insights for the engineering design community to realize the untapped potential of GANs for DCG. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2050052
- PAR ID:
- 10590693
- Publisher / Repository:
- Design Science
- Date Published:
- Journal Name:
- Design Science
- Volume:
- 10
- ISSN:
- 2053-4701
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Generative Adversarial Networks (GANs) have shown remarkable success in various generative design tasks, from topology optimization to material design, and shape parametrization. However, most generative design approaches based on GANs lack evaluation mechanisms to ensure the generation of diverse samples. In addition, no GAN-based generative design model incorporates user sentiments in the loss function to generate samples with high desirability from the aggregate perspectives of users. Motivated by these knowledge gaps, this paper builds and validates a novel GAN-based generative design model with an offline design evaluation function to generate samples that are not only realistic, but also diverse and desirable. A multimodal Data-driven Design Evaluation (DDE) model is developed to guide the generative process by automatically predicting user sentiments for the generated samples based on large-scale user reviews of previous designs. This paper incorporates DDE into the StyleGAN structure, a state-of-the-art GAN model, to enable data-driven generative processes that are innovative and user-centered. The results of experiments conducted on a large dataset of footwear products demonstrate the effectiveness of the proposed DDE-GAN in generating high-quality, diverse, and desirable concepts.more » « less
- 
            null (Ed.)Protein molecules are inherently dynamic and modulate their interactions with different molecular partners by accessing different tertiary structures under physiological conditions. Elucidating such structures remains challenging. Current momentum in deep learning and the powerful performance of generative adversarial networks (GANs) in complex domains, such as computer vision, inspires us to investigate GANs on their ability to generate physically-realistic protein tertiary structures. The analysis presented here shows that several GAN models fail to capture complex, distal structural patterns present in protein tertiary structures. The study additionally reveals that mechanisms touted as effective in stabilizing the training of a GAN model are not all effective, and that performance based on loss alone may be orthogonal to performance based on the quality of generated datasets. A novel contribution in this study is the demonstration that Wasserstein GAN strikes a good balance and manages to capture both local and distal patterns, thus presenting a first step towards more powerful deep generative models for exploring a possibly very diverse set of structures supporting diverse activities of a protein molecule in the cell.more » « less
- 
            Generative Adversarial Networks (GANs) have promoted a variety of applications in computer vision and natural language processing, among others, due to its generative model’s compelling ability to generate realistic examples plausibly drawn from an existing distribution of samples. GAN not only provides impressive performance on data generation-based tasks but also stimulates fertilization for privacy and security oriented research because of its game theoretic optimization strategy. Unfortunately, there are no comprehensive surveys on GAN in privacy and security, which motivates this survey to summarize systematically. The existing works are classified into proper categories based on privacy and security functions, and this survey conducts a comprehensive analysis of their advantages and drawbacks. Considering that GAN in privacy and security is still at a very initial stage and has imposed unique challenges that are yet to be well addressed, this article also sheds light on some potential privacy and security applications with GAN and elaborates on some future research directions.more » « less
- 
            Abstract Generative adversarial networks (GAN) have witnessed tremendous growth in recent years, demonstrating wide applicability in many domains. However, GANs remain notoriously difficult for people to interpret, particularly for modern GANs capable of generating photo‐realistic imagery. In this work we contribute a visual analytics approach for GAN interpretability, where we focus on the analysis and visualization of GAN disentanglement. Disentanglement is concerned with the ability to control content produced by a GAN along a small number of distinct, yet semantic, factors of variation. The goal of our approach is to shed insight on GAN disentanglement, above and beyond coarse summaries, instead permitting a deeper analysis of the data distribution modeled by a GAN. Our visualization allows one to assess a single factor of variation in terms of groupings and trends in the data distribution, where our analysis seeks to relate the learned representation space of GANs with attribute‐based semantic scoring of images produced by GANs. Through use‐cases, we show that our visualization is effective in assessing disentanglement, allowing one to quickly recognize a factor of variation and its overall quality. In addition, we show how our approach can highlight potential dataset biases learned by GANs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    