Empirical studies have demonstrated the effectiveness of (score-based) diffusion models in generating high-dimensional data, such as texts and images, which typically exhibit a low-dimensional manifold nature. These empirical successes raise the theoretical question of whether score-based diffusion models can optimally adapt to low-dimensional manifold structures. While recent work has validated the minimax optimality of diffusion models when the target distribution admits a smooth density with respect to the Lebesgue measure of the ambient data space, these findings do not fully account for the ability of diffusion models in avoiding the the curse of dimensionality when estimating high-dimensional distributions. This work considers two common classes of diffusion models: Langevin diffusion and forward-backward diffusion. We show that both models can adapt to the intrinsic manifold structure by showing that the convergence rate of the inducing distribution estimator depends only on the intrinsic dimension of the data. Moreover, our considered estimator does not require knowing or explicitly estimating the manifold. We also demonstrate that the forward-backward diffusion can achieve the minimax optimal rate under the Wasserstein metric when the target distribution possesses a smooth density with respect to the volume measure of the low-dimensional manifold.
more »
« less
Opportunities and challenges of diffusion models for generative AI
ABSTRACT Diffusion models, a powerful and universal generative artificial intelligence technology, have achieved tremendous success and opened up new possibilities in diverse applications. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active control towards task-desired properties. Despite the significant empirical success, theoretical underpinnings of diffusion models are very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models to highlight their sample generation capabilities under various control goals. At the same time, we dive into the unique working flow of diffusion models through the lens of stochastic processes. We identify theoretical challenges in analyzing diffusion models, owing to their complicated training procedure and interaction with the underlying data distribution. To address these challenges, we overview several promising advances, demonstrating diffusion models as an efficient distribution learner and a sampler. Furthermore, we introduce a new avenue in high-dimensional structured optimization through diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded exposure for stimulating forward-looking theories and methods of diffusion models.
more »
« less
- Award ID(s):
- 2210833
- PAR ID:
- 10590718
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- National Science Review
- Volume:
- 11
- Issue:
- 12
- ISSN:
- 2095-5138
- Page Range / eLocation ID:
- nwae348
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Stochastic Gradient Langevin Dynamics (SGLD) have been widely used for Bayesian sampling from certain probability distributions, incorporating derivatives of the log-posterior. With the derivative evaluation of the log-posterior distribution, SGLD methods generate samples from the distribution through performing as a thermostats dynamics that traverses over gradient flows of the log-posterior with certainly controllable perturbation. Even when the density is not known, existing solutions still can first learn the kernel density models from the given datasets, then produce new samples using the SGLD over the kernel density derivatives. In this work, instead of exploring new samples from kernel spaces, a novel SGLD sampler, namely, Randomized Measurement Langevin Dynamics (RMLD) is proposed to sample the high-dimensional sparse representations from the spectral domain of a given dataset. Specifically, given a random measurement matrix for sparse coding, RMLD first derives a novel likelihood evaluator of the probability distribution from the loss function of LASSO, then samples from the high-dimensional distribution using stochastic Langevin dynamics with derivatives of the logarithm likelihood and Metropolis–Hastings sampling. In addition, new samples in low-dimensional measuring spaces can be regenerated using the sampled high-dimensional vectors and the measurement matrix. The algorithm analysis shows that RMLD indeed projects a given dataset into a high-dimensional Gaussian distribution with Laplacian prior, then draw new sparse representation from the dataset through performing SGLD over the distribution. Extensive experiments have been conducted to evaluate the proposed algorithm using real-world datasets. The performance comparisons on three real-world applications demonstrate the superior performance of RMLD beyond baseline methods.more » « less
-
Generating 3D graphs of symmetry-group equivariance is of intriguing potential in broad applications from machine vision to molecular discovery. Emerging approaches adopt diffusion generative models (DGMs) with proper re-engineering to capture 3D graph distributions. In this paper, we raise an orthogonal and fundamental question of in what (latent) space we should diffuse 3D graphs. ❶ We motivate the study with theoretical analysis showing that the performance bound of 3D graph diffusion can be improved in a latent space versus the original space, provided that the latent space is of (i) low dimensionality yet (ii) high quality (i.e., low reconstruction error) and DGMs have (iii) symmetry preservation as an inductive bias. ❷ Guided by the theoretical guidelines, we propose to perform 3D graph diffusion in a low-dimensional latent space, which is learned through cascaded 2D–3D graph autoencoders for low-error reconstruction and symmetry-group invariance. The overall pipeline is dubbed latent 3D graph diffusion. ❸ Motivated by applications in molecular discovery, we further extend latent 3D graph diffusion to conditional generation given SE(3)-invariant attributes or equivariant 3D objects. ❹ We also demonstrate empirically that out-of-distribution conditional generation can be further improved by regularizing the latent space via graph self-supervised learning. We validate through comprehensive experiments that our method generates 3D molecules of higher validity / drug-likeliness and comparable or better conformations / energetics, while being an order of magnitude faster in training. Codes are released at https://github.com/Shen-Lab/LDM-3DG.more » « less
-
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) methods have been widely used to sample from certain probability distributions, incorporating (kernel) density derivatives and/or given datasets. Instead of exploring new samples from kernel spaces, this piece of work proposed a novel SGHMC sampler, namely Spectral Hamiltonian Monte Carlo (SpHMC), that produces the high dimensional sparse representations of given datasets through sparse sensing and SGHMC. Inspired by compressed sensing, we assume all given samples are low-dimensional measurements of certain high-dimensional sparse vectors, while a continuous probability distribution exists in such high-dimensional space. Specifically, given a dictionary for sparse coding, SpHMC first derives a novel likelihood evaluator of the probability distribution from the loss function of LASSO, then samples from the high-dimensional distribution using stochastic Langevin dynamics with derivatives of the logarithm likelihood and Metropolis–Hastings sampling. In addition, new samples in low-dimensional measuring spaces can be regenerated using the sampled high-dimensional vectors and the dictionary. Extensive experiments have been conducted to evaluate the proposed algorithm using real-world datasets. The performance comparisons on three real-world applications demonstrate the superior performance of SpHMC beyond baseline methods.more » « less
-
Diffusion models achieve state-of-the-art performance in various generation tasks. However, their theoretical foundations fall far behind. This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace. Our result provides sample complexity bounds for distribution estimation using diffusion models. We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated. Further, the generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution. The convergence rate depends on subspace dimension, implying that diffusion models can circumvent the curse of data ambient dimensionality.more » « less
An official website of the United States government

