Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Diffusion models, a powerful and universal generative artificial intelligence technology, have achieved tremendous success and opened up new possibilities in diverse applications. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active control towards task-desired properties. Despite the significant empirical success, theoretical underpinnings of diffusion models are very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models to highlight their sample generation capabilities under various control goals. At the same time, we dive into the unique working flow of diffusion models through the lens of stochastic processes. We identify theoretical challenges in analyzing diffusion models, owing to their complicated training procedure and interaction with the underlying data distribution. To address these challenges, we overview several promising advances, demonstrating diffusion models as an efficient distribution learner and a sampler. Furthermore, we introduce a new avenue in high-dimensional structured optimization through diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded exposure for stimulating forward-looking theories and methods of diffusion models.more » « lessFree, publicly-accessible full text available November 15, 2025
-
Abstract This paper introduces a general framework of Semi-parametric TEnsor Factor Analysis (STEFA) that focuses on the methodology and theory of low-rank tensor decomposition with auxiliary covariates. Semi-parametric TEnsor Factor Analysis models extend tensor factor models by incorporating auxiliary covariates in the loading matrices. We propose an algorithm of iteratively projected singular value decomposition (IP-SVD) for the semi-parametric estimation. It iteratively projects tensor data onto the linear space spanned by the basis functions of covariates and applies singular value decomposition on matricized tensors over each mode. We establish the convergence rates of the loading matrices and the core tensor factor. The theoretical results only require a sub-exponential noise distribution, which is weaker than the assumption of sub-Gaussian tail of noise in the literature. Compared with the Tucker decomposition, IP-SVD yields more accurate estimators with a faster convergence rate. Besides estimation, we propose several prediction methods with new covariates based on the STEFA model. On both synthetic and real tensor data, we demonstrate the efficacy of the STEFA model and the IP-SVD algorithm on both the estimation and prediction tasks.more » « less
-
Free, publicly-accessible full text available April 3, 2026
-
Free, publicly-accessible full text available January 2, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
This paper makes progress toward learning Nash equilibria in two-player, zero-sum Markov games from offline data. Despite a large number of prior works tackling this problem, the state-of-the-art results suffer from the curse of multiple agents in the sense that their sample complexity bounds scale linearly with the total number of joint actions. The current paper proposes a new model-based algorithm, which provably finds an approximate Nash equilibrium with a sample complexity that scales linearly with the total number of individual actions. This work also develops a matching minimax lower bound, demonstrating the minimax optimality of the proposed algorithm for a broad regime of interest. An appealing feature of the result lies in algorithmic simplicity, which reveals the unnecessity of sophisticated variance reduction and sample splitting in achieving sample optimality.more » « lessFree, publicly-accessible full text available November 1, 2025
An official website of the United States government

Full Text Available