skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convergence of the boundary integral method for interfacial Stokes flow
Boundary integral numerical methods are among the most accurate methods for interfacial Stokes flow, and are widely applied. They have the advantage that only the boundary of the domain must be discretized, which reduces the number of discretization points and allows the treatment of complicated interfaces. Despite their popularity, there is no analysis of the convergence of these methods for interfacial Stokes flow. In practice, the stability of discretizations of the boundary integral formulation can depend sensitively on details of the discretization and on the application of numerical filters. We present a convergence analysis of the boundary integral method for Stokes flow, focusing on a rather general method for computing the evolution of an elastic capsule or viscous drop in 2D strain and shear flows. The analysis clarifies the role of numerical filters in practical computations.  more » « less
Award ID(s):
1909407
PAR ID:
10437522
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematics of Computation
Volume:
92
Issue:
340
ISSN:
0025-5718
Page Range / eLocation ID:
695 to 748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary In this paper, we propose and analyze two stabilized mixed finite element methods for the dual‐porosity‐Stokes model, which couples the free flow region and microfracture‐matrix system through four interface conditions on an interface. The first stabilized mixed finite element method is a coupled method in the traditional format. Based on the idea of partitioned time stepping, the four interface conditions, and the mass exchange terms in the dual‐porosity model, the second stabilized mixed finite element method is decoupled in two levels and allows a noniterative splitting of the coupled problem into three subproblems. Due to their superior conservation properties and convenience of the computation of flux, mixed finite element methods have been widely developed for different types of subsurface flow problems in porous media. For the mixed finite element methods developed in this article, no Lagrange multiplier is used, but an interface stabilization term with a penalty parameter is added in the temporal discretization. This stabilization term ensures the numerical stability of both the coupled and decoupled schemes. The stability and the convergence analysis are carried out for both the coupled and decoupled schemes. Three numerical experiments are provided to demonstrate the accuracy, efficiency, and applicability of the proposed methods. 
    more » « less
  2. Abstract The paper addresses an error analysis of an Eulerian finite element method used for solving a linearized Navier–Stokes problem in a time-dependent domain. In this study, the domain’s evolution is assumed to be known and independent of the solution to the problem at hand. The numerical method employed in the study combines a standard backward differentiation formula-type time-stepping procedure with a geometrically unfitted finite element discretization technique. Additionally, Nitsche’s method is utilized to enforce the boundary conditions. The paper presents a convergence estimate for several velocity–pressure elements that are inf-sup stable. The estimate demonstrates optimal order convergence in the energy norm for the velocity component and a scaled $$L^{2}(H^{1})$$-type norm for the pressure component. 
    more » « less
  3. Abstract We consider the interaction between a poroelastic structure, described using the Biot model in primal form, and a free-flowing fluid, modelled with the time-dependent incompressible Stokes equations. We propose a diffuse interface model in which a phase field function is used to write each integral in the weak formulation of the coupled problem on the entire domain containing both the Stokes and Biot regions. The phase field function continuously transitions from one to zero over a diffuse region of width $$\mathcal{O}(\varepsilon)$$ around the interface; this allows the weak forms to be integrated uniformly across the domain, and obviates tracking the subdomains or the interface between them. We prove convergence in weighted norms of a finite element discretization of the diffuse interface model to the continuous diffuse model; here the weight is a power of the distance to the diffuse interface. We, in turn, prove convergence of the continuous diffuse model to the standard, sharp interface, model. Numerical examples verify the proven error estimates, and illustrate application of the method to fluid flow through a complex network, describing blood circulation in the circle of Willis. 
    more » « less
  4. The general system of images for regularized Stokeslets (GSIRS) developed by Cortez and Varela [] is used extensively to model Stokes flow phenomena such as microorganisms swimming near a boundary. Our collaborative team uses dynamically similar scaled macroscopic experiments to test theories for forces and torques on spheres moving near a boundary and uses these data and the method of regularized Stokeslets (MRS) created by Cortez [] to calibrate the GSIRS. We find excellent agreement between theory and experiments, which provides experimental validation of exact series solutions for spheres moving near an infinite plane boundary. We test two surface discretization methods commonly used in the literature: the 6-patch method and the spherical centroidal Voronoi tessellation (SCVT) method. Our data show that a discretization method, such as SCVT, that uniformly distributes points provides the most accurate results when the motional symmetry is broken by the presence of a boundary. We use theory and the MRS to find optimal values for the regularization parameter in free space for a given surface discretization and show that the optimal regularization parameter values can be fit with simple formulas when using the SCVT method. We also present a regularization function with higher-order accuracy when compared with the regularization function previously introduced by Cortez []. The simulated force and torque values compare very well with experiments and theory for a wide range of boundary distances. However, we find that for a fixed discretization of the sphere, the simulations lose accuracy when the gap between the edge of the sphere and the wall is smaller than the average distance between discretization points in the SCVT method. We also show an alternative method to calibrate the GSIRS to simulate sphere motion arbitrarily close to the boundary. Our computational parameters and methods along with our matlab and python implementations of the series solution of Lee and Leal [], MRS, and GSIRS provide researchers with important resources to optimize the GSIRS and other numerical methods, so that they can efficiently and accurately simulate spheres moving near a boundary. 
    more » « less
  5. Abstract We develop a new finite difference method for the wave equation in second order form. The finite difference operators satisfy a summation-by-parts (SBP) property. With boundary conditions and material interface conditions imposed weakly by the simultaneous-approximation-term (SAT) method, we derive energy estimates for the semi-discretization. In addition, error estimates are derived by the normal mode analysis. The proposed method is termed as energy-based because of its similarity with the energy-based discontinuous Galerkin method. When imposing the Dirichlet boundary condition and material interface conditions, the traditional SBP-SAT discretization uses a penalty term with a mesh-dependent parameter, which is not needed in our method. Furthermore, numerical dissipation can be added to the discretization through the boundary and interface conditions. We present numerical experiments that verify convergence and robustness of the proposed method. 
    more » « less