skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 20, 2026

Title: A minimum Wasserstein distance approach to Fisher's combination of independent, discrete p ‐values
ABSTRACT This article introduces a comprehensive framework to adjust a discrete test statistic for improving its hypothesis testing procedure. The adjustment minimizes the Wasserstein distance to a null‐approximating continuous distribution, tackling some fundamental challenges inherent in combining statistical significances derived from discrete distributions. The related theory justifies Lancaster's mid‐p and mean‐value chi‐squared statistics for Fisher's combination as special cases. To counter the conservative nature of Lancaster's testing procedures, we propose an updated null‐approximating distribution. It is achieved by further minimizing the Wasserstein distance to the adjusted statistics within an appropriate distribution family. Specifically, in the context of Fisher's combination, we propose an optimal gamma distribution as a substitute for the traditionally used chi‐squared distribution. This new approach yields an asymptotically consistent test that significantly improves Type I error control and enhances statistical power.  more » « less
Award ID(s):
2113570
PAR ID:
10590818
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Scandinavian Journal of Statistics
ISSN:
0303-6898
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Combining dependent tests of significance has broad applications but the related p-value calculation is challenging. For Fisher's combination test, current p-value calculation methods (eg, Brown's approximation) tend to inflate the type I error rate when the desired significance level is substantially less than 0.05. The problem could lead to significant false discoveries in big data analyses. This paper provides two main contributions. First, it presents a general family of Fisher type statistics, referred to as the GFisher, which covers many classic statistics, such as Fisher's combination, Good's statistic, Lancaster's statistic, weighted Z-score combination, and so forth. The GFisher allows a flexible weighting scheme, as well as an omnibus procedure that automatically adapts proper weights and the statistic-defining parameters to a given data. Second, the paper presents several new p-value calculation methods based on two novel ideas: moment-ratio matching and joint-distribution surrogating. Systematic simulations show that the new calculation methods are more accurate under multivariate Gaussian, and more robust under the generalized linear model and the multivariate t-distribution. The applications of the GFisher and the new p-value calculation methods are demonstrated by a gene-based single nucleotide polymorphism (SNP)-set association study. Relevant computation has been implemented to an R package GFisher available on the Comprehensive R Archive Network. 
    more » « less
  2. Abstract Motivated by applications in text mining and discrete distribution inference, we test for equality of probability mass functions of K groups of high-dimensional multinomial distributions. Special cases of this problem include global testing for topic models, two-sample testing in authorship attribution, and closeness testing for discrete distributions. A test statistic, which is shown to have an asymptotic standard normal distribution under the null hypothesis, is proposed. This parameter-free limiting null distribution holds true without requiring identical multinomial parameters within each group or equal group sizes. The optimal detection boundary for this testing problem is established, and the proposed test is shown to achieve this optimal detection boundary across the entire parameter space of interest. The proposed method is demonstrated in simulation studies and applied to analyse two real-world datasets to examine, respectively, variation among customer reviews of Amazon movies and the diversity of statistical paper abstracts. 
    more » « less
  3. Cognitive Diagnosis Models (CDMs) are a special family of discrete latent variable models widely used in educational, psychological and social sciences. In many applications of CDMs, certain hierarchical structures among the latent attributes are assumed by researchers to characterize their dependence structure. Specifically, a directed acyclic graph is used to specify hierarchical constraints on the allowable configurations of the discrete latent attributes. In this paper, we consider the important yet unaddressed problem of testing the existence of latent hierarchical structures in CDMs. We first introduce the concept of testability of hierarchical structures in CDMs and present sufficient conditions. Then we study the asymptotic behaviors of the likelihood ratio test (LRT) statistic, which is widely used for testing nested models. Due to the irregularity of the problem, the asymptotic distribution of LRT becomes nonstandard and tends to provide unsatisfactory finite sample performance under practical conditions. We provide statistical insights on such failures, and propose to use parametric bootstrap to perform the testing. We also demonstrate the effectiveness and superiority of parametric bootstrap for testing the latent hierarchies over non-parametric bootstrap and the naïve Chi-squared test through comprehensive simulations and an educational assessment dataset. 
    more » « less
  4. We present a novel inference approach that we call sample out-of-sample inference. The approach can be used widely, ranging from semisupervised learning to stress testing, and it is fundamental in the application of data-driven distributionally robust optimization. Our method enables measuring the impact of plausible out-of-sample scenarios in a given performance measure of interest, such as a financial loss. The methodology is inspired by empirical likelihood (EL), but we optimize the empirical Wasserstein distance (instead of the empirical likelihood) induced by observations. From a methodological standpoint, our analysis of the asymptotic behavior of the induced Wasserstein-distance profile function shows dramatic qualitative differences relative to EL. For instance, in contrast to EL, which typically yields chi-squared weak convergence limits, our asymptotic distributions are often not chi-squared. Also, the rates of convergence that we obtain have some dependence on the dimension in a nontrivial way but remain controlled as the dimension increases. 
    more » « less
  5. null (Ed.)
    Abstract Wilk’s theorem, which offers universal chi-squared approximations for likelihood ratio tests, is widely used in many scientific hypothesis testing problems. For modern datasets with increasing dimension, researchers have found that the conventional Wilk’s phenomenon of the likelihood ratio test statistic often fails. Although new approximations have been proposed in high dimensional settings, there still lacks a clear statistical guideline regarding how to choose between the conventional and newly proposed approximations, especially for moderate-dimensional data. To address this issue, we develop the necessary and sufficient phase transition conditions for Wilk’s phenomenon under popular tests on multivariate mean and covariance structures. Moreover, we provide an in-depth analysis of the accuracy of chi-squared approximations by deriving their asymptotic biases. These results may provide helpful insights into the use of chi-squared approximations in scientific practices. 
    more » « less