skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 27, 2026

Title: MultiChartQA: Benchmarking Vision-Language Models on Multi-Chart Problems
Multimodal Large Language Models (MLLMs) have demonstrated impressive abilities across various tasks, including visual question answering and chart comprehension, yet existing benchmarks for chart-related tasks fall short in capturing the complexity of real-world multi-chart scenarios. Current benchmarks primarily focus on single-chart tasks, neglecting the multi-hop reasoning required to extract and integrate information from multiple charts, which is essential in practical applications. To fill this gap, we introduce MultiChartQA, a benchmark that evaluates MLLMs’ capabilities in four key areas: direct question answering, parallel question answering, comparative reasoning, and sequential reasoning. Our evaluation of a wide range of MLLMs reveals significant performance gaps compared to humans. These results highlight the challenges in multi-chart comprehension and the potential of MultiChartQA to drive advancements in this field. Our code and data are available at https://github.com/Zivenzhu/Multi-chart-QA.  more » « less
Award ID(s):
2234058 2137396 2142827 2119531 1901059
PAR ID:
10590837
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
ISBN:
979-8-89176-189-6
Format(s):
Medium: X
Location:
Albuquerque, New Mexico
Sponsoring Org:
National Science Foundation
More Like this
  1. With the advent of multi-modal large language models (MLLMs), datasets used for visual question answering (VQA) and referring expression comprehension have seen a resurgence. However, the most popular datasets used to evaluate MLLMs are some of the earliest ones created, and they have many known problems, including extreme bias, spurious correlations, and an inability to permit fine-grained analysis. In this paper, we pioneer evaluating recent MLLMs (LLaVA 1.5, LLaVA-NeXT, BLIP2, InstructBLIP, GPT-4V, and GPT-4o) on datasets designed to address weaknesses in earlier ones. We assess three VQA datasets: 1) TDIUC, which permits fine-grained analysis on 12 question types; 2) TallyQA, which has simple and complex counting questions; and 3) DVQA, which requires optical character recognition for chart understanding. We also study VQDv1, a dataset that requires identifying all image regions that satisfy a given query. Our experiments reveal the weaknesses of many MLLMs that have not previously been reported. Our code is integrated into the widely used LAVIS framework for MLLM evaluation, enabling the rapid assessment of future MLLMs. 
    more » « less
  2. Chart comprehension presents significant challenges for machine learning models due to the diverse and intricate shapes of charts. Existing multimodal methods often over-look these visual features or fail to integrate them effectively for Chart Question Answering. To address this, we introduce CHARTFORMER, a unified framework that enhances chart component recognition by accurately identifying and classifying components such as bars, lines, pies, titles, legends, and axes. Additionally, we propose a novel Question-guided Deformable Co-Attention (QDCAt) mechanism, which fuses chart features encoded by Chart-former with the given question, leveraging the question's guidance to ground the correct answer. Extensive experiments demonstrate a 3.2% improvement in mAP over the baselines for chart component recognition. For ChartQA and OpenCQA tasks, our approach achieves improvements of 15.4% in accuracy and 0.8 in BLEU score, respectively, underscoring the robustness of our solution for detailed visual data interpretation across various applications. 
    more » « less
  3. Neural models, including large language models (LLMs), achieve superior performance on logical reasoning tasks such as question answering. To elicit reasoning capabilities from LLMs, recent works propose using the chain-of-thought (CoT) mechanism to generate both the reasoning chain and the answer, which enhances the model’s capabilities in conducting reasoning. However, due to LLM’s uninterpretable nature and the extreme flexibility of free-form explanations, several challenges remain: such as struggling with inaccurate reasoning, hallucinations, and not aligning with human preferences. In this talk, we will focus on (1) our design of leveraging structured information (that is grounded to the context), for the explainable complex question answering and reasoning; (2) our multi-module interpretable framework for inductive reasoning, which conducts step-wise faithful reasoning with iterative feedback. 
    more » « less
  4. While there has been substantial progress in text comprehension through simple factoid question answering, more holistic comprehension of a discourse still presents a major challenge (Dunietz et al., 2020). Someone critically reflecting on a text as they read it will pose curiosity-driven, often open-ended questions, which reflect deep understanding of the content and require complex reasoning to answer (Ko et al., 2020; Westera et al., 2020). A key challenge in building and evaluating models for this type of discourse comprehension is the lack of annotated data, especially since collecting answers to such questions requires high cognitive load for annotators. This paper presents a novel paradigm that enables scalable data collection targeting the comprehension of news documents, viewing these questions through the lens of discourse. The resulting corpus, DCQA (Discourse Comprehension by Question Answering), captures both discourse and semantic links between sentences in the form of free-form, open-ended questions. On an evaluation set that we annotated on questions from Ko et al. (2020), we show that DCQA provides valuable supervision for answering open-ended questions. We additionally design pre-training methods utilizing existing question-answering resources, and use synthetic data to accommodate unanswerable questions. 
    more » « less
  5. While Chain-of-Thought (CoT) prompting boosts Language Models’ (LM) performance on a gamut of complex reasoning tasks, the generated reasoning chain does not necessarily reflect how the model arrives at the answer (aka. faithfulness). We propose Faithful CoT, a reasoning framework involving two stages: Translation (Natural Language query → symbolic reasoning chain) and Problem Solving (reasoning chain → answer), using an LM and a deterministic solver respectively. This guarantees that the reasoning chain provides a faithful explanation of the final answer. Aside from interpretability, Faithful CoT also improves empirical performance: it outperforms standard CoT on 9 of 10 benchmarks from 4 diverse domains, with a relative accuracy gain of 6.3% on Math Word Problems (MWP), 3.4% on Planning, 5.5% on Multi-hop Question Answering (QA), and 21.4% on Relational Inference. Furthermore, with GPT-4 and Codex, it sets the new state-of-the-art few-shot performance on 7 datasets (with 95.0+ accuracy on 6 of them), showing a strong synergy between faithfulness and accuracy. 
    more » « less