The evolution from Large Language Models (LLMs) to Multimodal Large Language Models (MLLMs) has spurred research into extending In-Context Learning (ICL) to its multimodal counterpart. Existing such studies have primarily concentrated on image-to-text ICL. However, the Text-to-Image ICL (T2I-ICL), with its unique characteristics and potential applications, remains underexplored. To address this gap, we formally define the task of T2I-ICL and present CoBSAT, the first T2I-ICL benchmark dataset, encompassing ten tasks. Utilizing our dataset to benchmark six state-of-the-art MLLMs, we uncover considerable difficulties MLLMs encounter in solving T2I-ICL. We identify the primary challenges as the inherent complexity of multimodality and image generation, and show that strategies such as fine-tuning and Chain-of-Thought prompting help to mitigate these difficulties, leading to notable improvements in performance. Our code and dataset are available at https://github.com/UW-Madison-Lee-Lab/CoBSAT. 
                        more » 
                        « less   
                    This content will become publicly available on April 27, 2026
                            
                            Protecting Privacy in Multimodal Large Language Models with MLLMU-Bench
                        
                    
    
            Generative models such as Large Language Models (LLM) and Multimodal Large Language models (MLLMs) trained on massive web corpora can memorize and disclose individuals’ confidential and private data, raising legal and ethical concerns. While many previous works have addressed this issue in LLM via machine unlearning, it remains largely unexplored for MLLMs. To tackle this challenge, we introduce Multimodal Large Language Model Unlearning Benchmark (MLLMU-Bench), a novel benchmark aimed at advancing the understanding of multimodal machine unlearning. MLLMU-Bench consists of 500 fictitious profiles and 153 profiles for public celebrities, each profile feature over 14 customized question-answer pairs, evaluated from both multimodal (image+text) and unimodal (text) perspectives. The benchmark is divided into four sets to assess unlearning algorithms in terms of efficacy, generalizability, and model utility. Finally, we provide baseline results using existing generative model unlearning algorithms. Surprisingly, our experiments show that unimodal unlearning algorithms excel in generation tasks, while multimodal unlearning approaches perform better in classification with multimodal inputs. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10590838
- Publisher / Repository:
- Association for Computational Linguistics
- Date Published:
- ISBN:
- 979-8-89176-189-6
- Format(s):
- Medium: X
- Location:
- Albuquerque, New Mexico
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Generative large language models (LLMs) exhibit impressive capabilities, which can be further augmented by integrating a pre-trained vision model into the original LLM to create a multimodal LLM (MLLM). However, this integration often significantly decreases performance on natural language understanding and generation tasks, compared to the original LLM. This study investigates this issue using the LLaVA MLLM, treating the integration as a continual learning problem. We evaluate five continual learning methods to mitigate forgetting and identify a technique that enhances visual understanding while minimizing linguistic performance loss. Our approach reduces linguistic performance degradation by up to 15% over the LLaVA recipe, while maintaining high multimodal accuracy. We also demonstrate the robustness of our method through continual learning on a sequence of vision-language tasks, effectively preserving linguistic skills while acquiring new multimodal capabilities.more » « less
- 
            Large language models (LLMs) have advanced to encompass extensive knowledge across diverse domains. Yet controlling what a large language model should not know is important for ensuring alignment and thus safe use. However, accurately and efficiently unlearning knowledge from an LLM remains challenging due to the potential collateral damage caused by the fuzzy boundary between retention and forgetting, and the large computational requirements for optimization across state-of-the-art models with hundreds of billions of parameters. In this work, we present \textbf{Embedding-COrrupted (ECO) Prompts}, a lightweight unlearning framework for large language models to address both the challenges of knowledge entanglement and unlearning efficiency. Instead of relying on the LLM itself to unlearn, we enforce an unlearned state during inference by employing a prompt classifier to identify and safeguard prompts to forget. We learn corruptions added to prompt embeddings via zeroth order optimization toward the unlearning objective offline and corrupt prompts flagged by the classifier during inference. We find that these embedding-corrupted prompts not only lead to desirable outputs that satisfy the unlearning objective but also closely approximate the output from a model that has never been trained on the data intended for forgetting. Through extensive experiments on unlearning, we demonstrate the superiority of our method in achieving promising unlearning at \textit{nearly zero side effects} in general domains and domains closely related to the unlearned ones. Additionally, we highlight the scalability of our method to 100 LLMs, ranging from 0.5B to 236B parameters, incurring no additional cost as the number of parameters increases. We have made our code publicly available at \url{this https URL}.more » « less
- 
            Photographer, curator, and former director of photography at the Museum of Modern Art (MoMA), John Szarkowski remarked in *William Eggleston's Guide*, "While editing directly from life, photographers have found it too difficult to see simultaneously both the blue and the sky." Szarkowski insightfully revealed a notable gap between general and aesthetic visual understanding: while the former emphasizes identifying factual elements in an image (the sky), the latter transcends mere object identification, viewing it instead as an aesthetic component--a pure expanse of blue, valued purely as a color block in visual aesthetics. Such distinctions between general visual understanding (detection, localization, etc.) and aesthetic perception (color, lighting, composition, etc.) pose a significant challenge for existing Multimodal Large Language Models (MLLMs) in comprehending image aesthetics, which is increasingly needed in real-world applications, from image recommendation and enhancement to generation. To fundamentally advance the aesthetic understanding of MLLMs, we introduce a novel dataset, PhotoCritique, derived from extensive discussions among professional photographers and enthusiasts, distinguished by its large scale, expertise, and diversity. Additionally, we propose a new model, PhotoEye, an MLLM featuring a language-guided multi-view vision fusion mechanism for understanding image aesthetics from multiple perspectives. Finally, we introduce PhotoBench, a comprehensive and professional benchmark for aesthetic visual understanding. Our model demonstrates significant advantages over both open-source and commercial models on existing benchmarks and PhotoBench.more » « less
- 
            Multimodal Large Language Models (MLLMs) have demonstrated impressive abilities across various tasks, including visual question answering and chart comprehension, yet existing benchmarks for chart-related tasks fall short in capturing the complexity of real-world multi-chart scenarios. Current benchmarks primarily focus on single-chart tasks, neglecting the multi-hop reasoning required to extract and integrate information from multiple charts, which is essential in practical applications. To fill this gap, we introduce MultiChartQA, a benchmark that evaluates MLLMs’ capabilities in four key areas: direct question answering, parallel question answering, comparative reasoning, and sequential reasoning. Our evaluation of a wide range of MLLMs reveals significant performance gaps compared to humans. These results highlight the challenges in multi-chart comprehension and the potential of MultiChartQA to drive advancements in this field. Our code and data are available at https://github.com/Zivenzhu/Multi-chart-QA.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
