skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Relationship between structure and properties of bio-based aromatic ionic liquids for tribological applications
his study examined six phosphonium-based room-temperature ionic liquids (PRTILs) having trihexyltetradecyl- or tributyltetradecyl-phosphonium cations with saccharinate, salicylate, or benzoate anions, and obtained a feature parameter to correlate their cationic chain length, anionic ring size, and contact angle with tribological properties. PRTILs with trihexyltetradecyl-phosphonium cations had lower coefficient of friction (COF) and wear than PRTILs with tributyltetradecyl- phosphonium cations, a trend attributed to the additional methylene groups providing lower contact angle. For either cation, PRTILs with the saccharinate anion exhibited much lower COF and wear than single-ring anions, due to the formation of a low-shear-strength-tribofilm facilitated by the double-ring structure and sulfur of saccharinate. Overall, this study revealed PRTIL interfacial mechanisms that can be used to identify anion-cation combinations with optimal tribological performance.  more » « less
Award ID(s):
2010205
PAR ID:
10590895
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Tribology International
Volume:
202
Issue:
C
ISSN:
0301-679X
Page Range / eLocation ID:
110353
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Conventional lubricants face significant challenges in electric vehicle (EV) systems due to their low electrical conductivity and inability to mitigate tribo-electrification effects which can result in increased friction, wear, and electrical discharge damage under external electrification. Consequently, conductive lubricants like ionic liquids (ILs) have emerged as promising alternatives, offering enhanced compatibility with EV applications. This study investigated the tribological behavior of four phosphonium-based room temperature ionic liquids (PRTILs) with trihexyltetradecyl phosphonium [P6,6,6,14] or tributyltetradecyl phosphonium [P4,4,4,14] cations and saccharinate [Sacc] or benzoate [Benz] anions under electrified conditions, targeting potential EV applications. Physicochemical properties, including viscosity and ionic conductivity, were measured using a viscometer and a conductivity meter, while tribological properties were evaluated using an electrified mini-traction machine and an electrified rotary ball-on-disk setup. The results revealed that all the PRTILs exhibited superior tribological (friction and wear) performance than mineral oil with or without electrification. PRTILs with the [Sacc] anion feature a double aromatic ring structure, while those with the [Benz] anion feature a single aromatic ring structure. Under low electrification (10 mA), [P6,6,6,14][Sacc] outperformed [Benz]-based PRTILs, showing a lower coefficient of friction and wear due to their higher viscosity and lower ionic conductivity. Additionally, [P6,6,6,14][Sacc] showed a power loss lower than [P4,4,4,14][Sacc] but higher than [Benz]-based PRTILs under tribo-electrification. The addition of graphene nanoplatelets (GNPs) reduced the power loss of [P6,6,6,14][Sacc] by 24% by reducing the electric contact resistance. Overall, double-ring aromatic [P6,6,6,14][Sacc] demonstrated superior tribological performance, and GNP additives enhanced their power efficiency, offering a promising pathway for IL-based lubricant development for electrified conditions. 
    more » « less
  2. Organic ionic plastic crystals (OIPCs) are emerging as promising electrolyte materials for solid-state batteries. However, despite the fast ionic diffusion, OIPCs exhibit relatively low DC conductivity in solid phases caused by strong ion-ion correlations that suppress charge transport. To understand the origin of this suppression, we performed a study of ion dynamics in the OIPC 1-Ethyl-1-methylpyrrolidinium bis (trifluoromethyl sulfonyl) imide [P12][TFSI] utilizing dielectric spectroscopy, light scattering, and Nuclear Magnetic Resonance diffusometry. Comparison of the results obtained in this study with the published earlier results on an OIPC with a completely different structure (Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate [P1,2,2,4][PF6]) revealed strong similarities in ion dynamics in both systems. Unlike DC conductivity, which may drop more than ten times between melted and solid phases, diffusion of anions and cations remains high and does not show strong changes at phase transition. The conductivity spectra in the broad frequency range demonstrate unusual shapes in solid phases with an additional step separating fast local ion motions from suppressed long-range charge diffusion controlling DC conductivity. We suggested that in solid phases, anions and cations can jump only between the specific ion sites defined by the crystalline structure. These constraints lead to strong cation-cation and anion-anion correlations strongly suppressing long-range charge transport. 
    more » « less
  3. This study explores, through a full factorial experimental design, the effects of graphite concentration and spray flow rate on the morphology, thickness, and tribological performance of graphite coatings for potential tribological applications. Coatings were applied to rough substrates using varying concentrations and flow rates, followed by analysis of their morphological characteristics, roughness, thickness, coefficient of friction (COF), and wear behavior. The results revealed distinct differences in the coating morphology based on flow rate, with low-flow-rate coatings exhibiting a porous structure and higher roughness, while high-flow-rate coatings displayed denser structures with lower roughness. A COF as low as 0.09 was achieved, which represented an 86% reduction compared to uncoated steel. COF and wear track measurements showed that thickness was influential in determining friction and the extent of wear. Flow rate dictated the coating structure, quantity of transfer film on the ball, and the extent of graphite compaction in the wear track to provide a protective layer. SEM and elemental analysis further revealed that graphite coatings provided effective protection against wear, with graphite remaining embedded in the innermost crevices of the wear track. Low flow rates may be preferable for applications requiring higher roughness and porosity, while high flow rates offer advantages in achieving denser coatings and better wear resistance. Overall, this study highlights the importance of optimizing graphite concentration and spray flow rate to tailor coating morphology, thickness, and tribological performance for practical applications. 
    more » « less
  4. Abstract This study examines the activity of chemisorbed CO2 species in the microenvironment formed by bifunctional ionic liquids (ILs) in the reactive capture and conversion (RCC) of CO2 to CO on silver. Comparative electroanalytical measurements with imidazolium based ILs were performed to probe the impact of electrostatic interactions, anion and cation basicity, and hydrogen bonding on RCC. Particularly, ILs with 1-ethyl,3-methylimidazolium ([EMIM]+) and 1-ethyl, 2,3-methylimidazolium ([EMMIM]+) cations and aprotic heterocyclic anions of 2-cyanopyrrolide ([2-CNpyr]) and 1,2,4-triazolide ([1,2,4-Triz]) were examined for RCC. It was found that anion–CO2 carbamate complexes facilitate RCC at significantly lower overpotentials compared to cation–CO2 carboxylate complexes. Additionally, [EMIM]+ was found to better stabilize anion–CO2 complexes than [EMMIM]+. Furthermore, it was found that 2-CNpyrH that naturally forms in CO2 absorption competes for electrode surface adsorption with the anion–CO2 carbamate complex, thereby reducing the electrochemical activity of the anion–CO2 complex. These results highlight the importance of IL structure in tuning the interfacial interactions and suggest that ILs with anion-dominated CO2 chemisorption enhances CO2 utilization in RCC applications. 
    more » « less
  5. Protective coatings are important for enhancing tribological behavior, preventing surface degradation, and reducing friction-induced energy losses during the operation of mechanical systems. Recently, tribocatalytically driven formation of protective carbon films at the contact interface has been demonstrated as a viable approach for repairing and extending the lifetime of protective coatings. Here, we study the effect of catalytic metals, specifically their composition and amount, on the tribocatalysis process. To achieve this, we test the tribological performance of electro-deposited amorphous CoNiP and CoCuP coatings in different hydrocarbon-rich environments. Our results indicate that the tribocatalytic repair of wear-induced damage is optimal when Ni and Cu are included in the Co-P matrix at 5 wt% Ni and 7 wt% Cu, respectively. Characterization of the wear tracks suggests that among the considered samples, the tribofilms formed on the surface of Co7CuP have the highest concentration of graphitic carbon, leading to a more significant reduction in the COF and wear rate. The carbon tribofilm formation was more pronounced in decane and synthetic oil than in ethanol, which is attributed to the difference in the length of the hydrocarbon molecules affecting viscosity and the lubricant film thickness during boundary lubrication sliding. 
    more » « less