A new neutron SIMulation program based on the versatile GEANT4 toolkit, neuSIM4, has been developed to describe interactions of neutrons in the NE213 liquid scintillator from 0.1 to 3000 MeV. neuSIM4 is designed to accommodate complicated modern detector geometry setups with multiple scintillator detectors, each of which can be outfitted with more than one photo-multiplier. To address a broad spectrum of neutron energies, two new neutron interaction physics models, KSCIN and NxQMD, have been implemented in GEANT4. For neutrons with energy below 110 MeV, we incorporate a total of eleven neutron induced reaction channels on hydrogen and carbon nuclei, including nine carbon inelastic reaction channels, into KSCIN. Beyond 110 MeV, we implement a neutron induced reaction model, NxQMD, in GEANT4. We use its results as reference to evaluate other neutron-interaction physics models in GEANT4. We find that results from an existing cascade physics model (INCL) in GEANT4 agree very well with the results from NxQMD, and results from both codes agree with new and existing light response data. To connect KSCIN to NxQMD or INCL, we introduce a transition region where the contribution of neuSIM4 linearly decreases with corresponding increased contributions from NxQMD or INCL. To demonstrate the application of the new code, we simulate the light response and performance of a 2 × 2 m2 neutron detector wall array consisting of 25 2m-long scintillation bars. We are able to compare the predicted light response functions to the shape of the experimental response functions and calculate the efficiency of the neutron detector array for neutron energies up to 200 MeV. These simulation results will be pivotal for understanding the performance of modern neutron arrays with intricate geometries, especially in the measurements of neutron energy spectra in heavy-ion reactions.
more »
« less
Modification on Thermal Motion in Geant4 for Neutron Capture Simulation in Gadolinium Loaded Water
Abstract Neutron tagging is a fundamental technique for electron anti-neutrino detection via the inverse beta decay channel. A reported discrepancy in neutron detection efficiency between observational data and simulation predictions prompted an investigation into neutron capture modeling in Geant4. The study revealed that an overestimation of the thermal motion of hydrogen atoms in Geant4 impacts the fraction of captured nuclei. By manually modifying the Geant4 implementation, the simulation results align with calculations based on evaluated nuclear data and show good agreement with observables derived from the SK-Gd data.
more »
« less
- Award ID(s):
- 2411709
- PAR ID:
- 10590950
- Publisher / Repository:
- Published by Oxford University Press on behalf of the Physical Society of Japan
- Date Published:
- Journal Name:
- Progress of Theoretical and Experimental Physics
- Volume:
- 2025
- Issue:
- 1
- ISSN:
- 2050-3911
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract For next-generation neutrinoless double beta decay experiments, extremely low backgrounds are necessary. An understanding of in-situ cosmogenic backgrounds is critical to the design effort. In-situ cosmogenic backgrounds impose a depth requirement and especially impact the choice of host laboratory. Often, simulations are used to understand background effects, and these simulations can have large uncertainties. One way to characterize the systematic uncertainties is to compare unalike simulation programs. In this paper, a suite of neutron simulations with identical geometries and starting parameters have been performed with Geant4 and MCNP, using geometries relevant to the LEGEND-1000 experiment. This study is an important step in gauging the uncertainties of simulations-based estimates. To reduce project risks associated with simulation uncertainties, a novel alternative shield of methane-doped liquid argon is considered in this paper for LEGEND-1000, which could achieve large background reduction without requiring significant modification to the baseline design.more » « less
-
Abstract The futureRicochetexperiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, theRicochetCollaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present theRicochetneutron background characterization using$$^3$$ He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to theRicochetGeant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the futureRicochetexperiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness of the muon veto, we expect a total nuclear recoil background rate between 44 ± 3 and 9 ± 2 events/day/kg in the CENNS region of interest, i.e. between 50 eV and 1 keV. We therefore found that theRicochetexperiment should reach a statistical significance of 4.6 to 13.6 $$\sigma $$ for the detection of CENNS after one reactor cycle, when only the limiting neutron background is considered.more » « less
-
Abstract Commercial alpha counters are used in science and industry applications to screen materials for surface radon progeny contamination. In this paper, we characterize an XIA UltraLo-1800, an ionization drift alpha counter, and study the response to embedded charge in polyethylene sample measurements. We show that modeling such effects is possible in a Geant4-based simulation framework and attempt to derive corrections. This paper also demonstrates the effectiveness of the use of an anti-static fan to eliminate the embedded charge and recover a 97.73% alpha detection efficiency in the alpha counter.more » « less
-
Abstract The detection of GW170817/AT2017gfo inaugurated an era of multimessenger astrophysics, in which gravitational-wave and multiwavelength photon observations complement one another to provide unique insight into astrophysical systems. A broad theoretical consensus exists, in which the photon phenomenology of neutron star mergers largely rests upon the evolution of the small amount of matter left on bound orbits around the black hole or massive neutron star remaining after the merger. Because this accretion disk is far from inflow equilibrium, its subsequent evolution depends very strongly on its initial state, yet very little is known about how this state is determined. Using both snapshot and tracer particle data from a numerical relativity/MHD simulation of an equal-mass neutron star merger that collapses to a black hole, we show how gravitational forces arising in a nonaxisymmetric, dynamical spacetime supplement hydrodynamical effects in shaping the initial structure of the bound debris disk. The work done by hydrodynamical forces is ∼10 times greater than that due to time-dependent gravity. Although gravitational torques prior to remnant relaxation are an order of magnitude larger than hydrodynamical torques, their intrinsic sign symmetry leads to strong cancellation; as a result, hydrodynamical and gravitational torques have a comparable effect. We also show that the debris disk’s initial specific angular momentum distribution is sharply peaked at roughly the specific angular momentum of the merged neutron star’s outer layers, a fewrgc, and identify the regulating mechanism.more » « less
An official website of the United States government

