The SABRE (Sodium-iodide with Active Background REjection) experiment is a new detector based on NaI(Tl) scintillating crystals for the dark matter detection through the annual modulation. With ultra-pure crystals and an active veto system, based on liquid scintillator surrounding the crystal array, SABRE will reach unprecedented low background and the highest sensitivity among the present NaI(Tl) experiments. Moreover SABRE will be the first dark matter search with twin detectors located in the North and South hemispheres, in Gran Sasso National Laboratories (LNGS), Italy, and Stawell Underground Laboratories (SUPL), Australia, respectively. The double location will help to quantify possible seasonal effects, and is a unique feature to identify a modulation of dark matter origins. SABRE is presently in the Proof-of-Principle (PoP) phase, with the goal to measure the crystal intrinsic and cosmogenic backgrounds of one 5 kg crystal and the active veto efficiency. We have performed a full geometry Monte Carlo simulation in order to evaluate the background contributions in the two distinct operation modes foreseen for the PoP: the potassium Measurement Mode (KMM) and the Dark Matter Measurement Mode (DMM), where the liquid scintillator detector is used in coincidence or anti-coincidence with the crystal, respectively. This paper presents the results of a detailed background simulation and the expected sensitivity for the SABRE full scale experiment.
more »
« less
Examining LEGEND-1000 cosmogenic neutron backgrounds in Geant4 and MCNP
Abstract For next-generation neutrinoless double beta decay experiments, extremely low backgrounds are necessary. An understanding of in-situ cosmogenic backgrounds is critical to the design effort. In-situ cosmogenic backgrounds impose a depth requirement and especially impact the choice of host laboratory. Often, simulations are used to understand background effects, and these simulations can have large uncertainties. One way to characterize the systematic uncertainties is to compare unalike simulation programs. In this paper, a suite of neutron simulations with identical geometries and starting parameters have been performed with Geant4 and MCNP, using geometries relevant to the LEGEND-1000 experiment. This study is an important step in gauging the uncertainties of simulations-based estimates. To reduce project risks associated with simulation uncertainties, a novel alternative shield of methane-doped liquid argon is considered in this paper for LEGEND-1000, which could achieve large background reduction without requiring significant modification to the baseline design.
more »
« less
- Award ID(s):
- 2111140
- PAR ID:
- 10550307
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Instrumentation
- Volume:
- 19
- Issue:
- 05
- ISSN:
- 1748-0221
- Page Range / eLocation ID:
- P05056
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We discuss JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo via detecting inverse beta decay reactions of electron anti-neutrinos resulting from the annihilation. We study possible backgrounds to the signature, including the reactor neutrinos, diffuse supernova neutrino background, charged- and neutral-current interactions of atmospheric neutrinos, backgrounds from muon-induced fast neutrons and cosmogenic isotopes. A fiducial volume cut, as well as the pulse shape discrimination and the muon veto are applied to suppress the above backgrounds. It is shown that JUNO sensitivity to the thermally averaged dark matter annihilation rate in 10 years of exposure would be significantly better than the present-day best limit set by Super-Kamiokande and would be comparable to that expected by Hyper-Kamiokande.more » « less
-
Abstract The futureRicochetexperiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, theRicochetCollaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present theRicochetneutron background characterization using$$^3$$ He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to theRicochetGeant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the futureRicochetexperiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness of the muon veto, we expect a total nuclear recoil background rate between 44 ± 3 and 9 ± 2 events/day/kg in the CENNS region of interest, i.e. between 50 eV and 1 keV. We therefore found that theRicochetexperiment should reach a statistical significance of 4.6 to 13.6 $$\sigma $$ for the detection of CENNS after one reactor cycle, when only the limiting neutron background is considered.more » « less
-
Abstract Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With$$40\,\textrm{t}$$ of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($$0\upnu \upbeta \upbeta $$ ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of$${}^{137}$$ Xe, the most crucial isotope in the search for$$0\upnu \upbeta \upbeta $$ of$${}^{136}$$ Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background.more » « less
-
Abstract We present a novel methodology to search for intranuclear neutron-antineutron transition (n⟶n̅) followed byn̅-nucleon annihilation within an40Ar nucleus, using the MicroBooNE liquid argon time projection chamber (LArTPC) detector. A discovery of n⟶n̅transition or a new best limit on the lifetime of this process would either constitute physics beyond the Standard Model or greatly constrain theories of baryogenesis, respectively. The approach presented in this paper makes use of deep learning methods to select n⟶n̅events based on their unique features and differentiate them from cosmogenic backgrounds. The achieved signal and background efficiencies are (70.22 ± 6.04)% and (0.0020 ± 0.0003)%, respectively. A demonstration of a search is performed with a data set corresponding to an exposure of 3.32 ×1026neutron-years, and where the background rate is constrained through direct measurement, assuming the presence of a negligible signal. With this approach, no excess of events over the background prediction is observed, setting a demonstrative lower bound on the n⟶n̅lifetime in40Ar of τm≳ 1.1×1026years, and on the free n⟶n̅transition time of τn⟶n̅≳ 2.6×105s, each at the 90% confidence level. This analysis represents a first-ever proof-of-principle demonstration of the ability to search for this rare process in LArTPCs with high efficiency and low background.more » « less
An official website of the United States government

