skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications
Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.  more » « less
Award ID(s):
2217159
PAR ID:
10591294
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACS Biomaterials Science & Engineering
Date Published:
Journal Name:
ACS Biomaterials Science & Engineering
Volume:
10
Issue:
10
ISSN:
2373-9878
Page Range / eLocation ID:
5915 to 5938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymers play a critical role in the biomedical and sustainable materials fields, serving as key resources for both research and product development. While synthetic and natural polymers are both widely used, synthetic polymers have traditionally dominated due to their ability to meet the specific material requirements of most fiber fabrication methods. However, synthetic polymers are derived from non-renewable resources, and their production raises environmental and health concerns. Natural polymers, on the other hand, are derived from renewable biological sources and include a subset known as biopolymers, such as proteins and polysaccharides, which are produced by living organisms. These biopolymers are naturally abundant and offer benefits such as biodegradability and non-toxicity, making them especially suitable for biomedical and green applications. Recently, air jet spinning has emerged as a promising method for fabricating biopolymer fibers, valued for its simplicity, cost-effectiveness, and safety—advantages that stand out compared to the more conventional electrospinning process. This review examines the methods and mechanisms of air jet spinning, drawing on empirical studies and practical insights to highlight its advantages over traditional fiber production techniques. By assembling natural biopolymers into micro- and nanofibers, this novel fabrication method demonstrates strong potential for targeted applications, including tissue engineering, drug delivery, air filtration, food packaging, and biosensing, utilizing various protein and polysaccharide sources. 
    more » « less
  2. Biocompatible polymers have emerged as essential materials in medical 3D printing, enabling the fabrication of scaffolds, tissue constructs, drug delivery systems, and biosensors for applications in and on the human body. This review aims to provide a comprehensive overview of the current state of 3D-printable biocompatible polymers and their composites, with an emphasis on their processing methods, properties, and biomedical uses. The scope of this work includes both natural and synthetic biocompatible polymers, polymer–nanocomposite systems, and bioinks that do not require photo initiators. The relevant literature was critically examined to classify materials by type, evaluate their compatibility with major 3D printing techniques such as stereolithography, selective laser sintering, and fused deposition modeling, and assess their performance in various medical applications. Key findings highlight that reinforced polymer composites, tailored surface chemistries, and hybrid printing strategies significantly expand the range of functional, customizable, and affordable biomedical devices. This review concludes by discussing present-day applications and emerging trends, underscoring that 3D-printable biocompatible polymers are rapidly transitioning from research to clinical practice, offering transformative potential for patient-specific healthcare solutions. 
    more » « less
  3. Abstract Electrospinning has emerged as a versatile and accessible technology for fabricating polymer fibers, particularly for biological applications. Natural polymers or biopolymers (including synthetically derivatized natural polymers) represent a promising alternative to synthetic polymers, as materials for electrospinning. Many biopolymers are obtained from abundant renewable sources, are biodegradable, and possess inherent biological functions. This review surveys recent literature reporting new fibers produced from emerging biopolymers, highlighting recent developments in the use of sulfated polymers (including carrageenans and glycosaminoglycans), tannin derivatives (condensed and hydrolyzed tannins, tannic acid), modified collagen, and extracellular matrix extracts. The proposed advantages of these biopolymer‐based fibers, focusing on their biomedical applications, are also discussed to highlight the use of new and emerging biopolymers (or new modifications to well‐established ones) to enhance or achieve new properties for electrospun fiber materials. 
    more » « less
  4. Hydrogel biomaterials derived from natural biopolymers (e.g., fibrin, collagen, decellularized extracellular matrix) are regularly utilized in three-dimensional (3D) cell culture and tissue engineering. In contrast to those based on synthetic polymers, natural materials permit enhanced cytocompatibility, matrix remodeling, and biological integration. Despite these advantages, natural protein-based gels have lagged behind synthetic alternatives in their tunability; methods to selectively modulate the biochemical properties of these networks in a user-defined and heterogeneous fashion that can drive encapsulated cell function have not yet been established. Here, we report a generalizable strategy utilizing a photomediated oxime ligation to covalently decorate naturally derived hydrogels with bioactive proteins including growth factors. This bioorthogonal photofunctionalization is readily amenable to mask-based and laser-scanning lithographic patterning, enabling full four-dimensional (4D) control over protein immobilization within virtually any natural protein-based biomaterial. Such versatility affords exciting opportunities to probe and direct advanced cell fates inaccessible using purely synthetic approaches in response to anisotropic environmental signaling. 
    more » « less
  5. Recent advances in biomedical research, particularly in optical applications, have sparked a transformative movement towards replacing synthetic polymers with more biocompatible and sustainable alternatives. Most often made from plastics or glass, these materials ignite immune responses from the body, and their production is based on environmentally harsh oil-based processes. Biopolymers, including both polysaccharides and proteins, have emerged as a potential candidate for optical biomaterials due to their inherent biocompatibility, biodegradability, and sustainability, derived from their existence in nature and being recognized by the immune system. Current extraction and fabrication methods for these biomaterials, including thermal drawing, extrusion and printing, mold casting, dry-jet wet spinning, hydrogel formations, and nanoparticles, aim to create optical materials in cost-effective and environmentally friendly manners for a wide range of applications. Present and future applications include optical waveguides and sensors, imaging and diagnostics, optical fibers, and waveguides, as well as ocular implants using biopolymers, which will revolutionize these fields, specifically their uses in the healthcare industry. 
    more » « less