skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2217159

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the first long-read de novo assembly and annotation of the luna moth (Actias luna) and provide the full characterization of heavy chain fibroin (h-fibroin), a long and highly repetitive gene (>20 kb) essential in silk fiber production. There are >160,000 described species of moths and butterflies (Lepidoptera), but only within the last 5 years have we begun to recover high-quality annotated whole genomes across the order that capture h-fibroin. Using PacBio HiFi reads, we produce the first high-quality long-read reference genome for this species. The assembled genome has a length of 532 Mb, a contig N50 of 16.8 Mb, an L50 of 14 contigs, and 99.4% completeness (BUSCO). Our annotation using Bombyx mori protein and A. luna RNAseq evidence captured a total of 20,866 genes at 98.9% completeness with 10,267 functionally annotated proteins and a full-length h-fibroin annotation of 2,679 amino acid residues. 
    more » « less
  2. Abstract While most species of butterflies and moths (Lepidoptera) have entirely terrestrial life histories, ∼0.5% of the described species are known to have an aquatic larval stage. Larvae of aquatic Lepidoptera are similar to caddisflies (Trichoptera) in that they use silk to anchor themselves to underwater substrates or to build protective cases. However, the physical properties and genetic elements of silks in aquatic Lepidoptera remain unstudied, as most research on lepidopteran silk has focused on the commercially important silkworm, Bombyx mori. Here, we provide high-quality PacBio HiFi genome assemblies of 2 distantly-related aquatic Lepidoptera species [Elophila obliteralis (Pyraloidea: Crambidae) and Hyposmocoma kahamanoa (Gelechioidea: Cosmopterigidae)]. As a step toward understanding the evolution of underwater silk in aquatic Lepidoptera, we used the genome assemblies and compared them to published genetic data of aquatic and terrestrial Lepidoptera. Sequences of the primary silk protein, h-fibroin, in aquatic moths have conserved termini and share a basic motif structure with terrestrial Lepidoptera. However, these sequences were similar to aquatic Trichoptera in that the percentage of positively and negatively charged amino acids was much higher than in terrestrial Lepidoptera, indicating a possible adaptation of silks to aquatic environments. 
    more » « less
  3. Abstract Automeris moths are a morphologically diverse group with 135 described species that have a geographic range that spans from the New World temperate zone to the Neotropics. Many Automeris have elaborate hindwing eyespots that are thought to deter or disrupt the attack of potential predators, allowing the moth time to escape. The Io moth (Automeris io), known for its striking eyespots, is a well-studied species within the genus and is an emerging model system to study the evolution of deimatism. Existing research on the eyespot pattern development will be augmented by genomic resources that allow experimental manipulation of this emerging model. Here, we present a high-quality, PacBio HiFi genome assembly for Io moth to aid existing research on the molecular development of eyespots and future research on other deimatic traits. This 490 Mb assembly is highly contiguous (N50 = 15.78 mbs) and complete (benchmarking universal single-copy orthologs = 98.4%). Additionally, we were able to recover orthologs of genes previously identified as being involved in wing pattern formation and movement. 
    more » « less
  4. Silk fibers produced by arthropods have inspired an array of materials with applications in healthcare, medical devices, textiles, and sustainability. Silks exhibit biodiversity with distinct variations in primary protein constituent sequences (fibroins, spidroins) and structures across taxonomic classifications, specifically the Lepidopteran and Araneae orders. Leveraging the biodiversity in arthropod silks offers advantages due to the diverse mechanical properties and thermal stabilities achievable, primarily attributed to variations in fiber crystallinity and repeating amino acid motifs. In this review, we aim to delineate known properties of silk fibers and correlate them with predicted protein sequences and secondary structures, informed by newly annotated genomes. We will discuss established patterns in repeat motifs governing specific properties and underscore the biological diversity within silk fibroin and spidroin sequences. Elucidating the relationship between protein sequences and properties of natural silk fibers will identify strategies for designing new materials through rational silk-based fiber design. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026
  5. Renewable and degradable materials, formed using biopolymers as material precursors, are sought after in pharmaceutical, biomedical, and industrial fields. Silk-based biomaterials, primarily derived from the silk fibroin protein of the Bombyx mori (B. mori) silkworm, have advantageous mechanical properties, biocompatibility, and commercial availability. Recent efforts aim to expand the range of achievable silk-based biomaterial properties via alternative sources of silk proteins with different sequences and structures. These structural distinctions drive differences in physical and chemical properties of silk fibers, primarily due to the varying degree of crystallinity in the polymers. For the development of alternative silk-based materials, silk from Plodia interpunctella (P. interpunctella), a small agricultural pest that infests and damages food products via silk production, is evaluated. Early investigations have highlighted differences between P. interpunctella and B. mori silk fibroin proteins, however P. interpunctella silk still largely lacks characterization and optimization on both the silk fiber and bulk material level. This work evaluates the structural, thermal, mechanical, and cell-material properties of non-degummed and degummed P. interpunctella silk as a raw material for biomaterial fabrication and discusses the benefits and limitations of these proteins as new biopolymers. Observed properties are used to identify links between silk fibroin protein sequence and fiber function in addition to forming hypotheses in how P. interpunctella silk-based biomaterials will perform in comparison to other natural biopolymers. Future work aims to develop methods to process P. interpunctella silk into material formats, utilizing the material characteristics determined here as a baseline for shifts in material performance. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering. 
    more » « less
  7. Silk fibers are produced by a wide variety of insects. The silkworm Bombyx mori (Bombyx) was domesticated because the physical properties of its silk fibers were amenable to the production of fine textiles. Subsequently, engineers have regenerated silk fibroin to form biomaterials. The monocular focus on Bombyx silk has underutilized the expanse of diverse silk proteins produced by more than 100,000 other arthropods. This vast array of silk fibers could be utilized for biomedical engineering challenges if sufficient rearing and purification processes are developed. Herein, we show that the moth, Plodia interpunctella (Plodia), represents an alternative silk source that is easily reared in highly regulated culture environments allowing for greater consistency in the silk produced. We controlled the temperature, resource availability (larvae/gram diet), and population density (larvae/mL) with the goal of increasing silk fiber production and improving homogeneity in Plodia silk proteins. We determined that higher temperatures accelerated insect growth and reduced life cycle length. Furthermore, we established initial protocols for the production of Plodia silk with optimal silk production occurring at 24 °C, with a resource availability of 10 larvae/gram and a population density of 0.72 larvae/mL. Population density was shown to be the most prominent driving force of Plodia silk mat formation among the three parameters assessed. Future work will need to link gene expression, protein production and purification, and resulting mechanical properties as a function of environmental cues to further transition Plodia silk into regenerated silk fibroin biomaterials. 
    more » « less
  8. Insect silk is a versatile biomaterial. Lepidoptera and Trichoptera display some of the most diverse uses of silk, with varying strength, adhesive qualities, and elastic properties. Silk fibroin genes are long (>20 Kbp), with many repetitive motifs that make them challenging to sequence. Most research thus far has focused on conserved N- and C-terminal regions of fibroin genes because a full comparison of repetitive regions across taxa has not been possible. Using the PacBio Sequel II system and SMRT sequencing, we generated high fidelity (HiFi) long-read genomic and transcriptomic sequences for the Indianmeal moth (Plodia interpunctella) and genomic sequences for the caddisfly Eubasilissa regina. Both genomes were highly contiguous (N50  = 9.7 Mbp/32.4 Mbp, L50  = 13/11) and complete (BUSCO complete  = 99.3%/95.2%), with complete and contiguous recovery of silk heavy fibroin gene sequences. We show that HiFi long-read sequencing is helpful for understanding genes with long, repetitive regions. 
    more » « less