Peripheral nerve reconstruction through the employment of nerve guidance conduits with Trichonephila dragline silk as a luminal filling has emerged as an outstanding preclinical alternative to avoid nerve autografts. Yet, it remains unknown whether the outcome is similar for silk fibers harvested from other spider species. This study compares the regenerative potential of dragline silk from two orb‐weaving spiders, Trichonephila naurata and Nuctenea umbratica, as well as the silk of the jumping spider Phidippus regius. Proliferation, migration, and transcriptomic state of Schwann cells seeded on these silks are investigated. In addition, fiber morphology, primary protein structure, and mechanical properties are studied. The results demonstrate that the increased velocity of Schwann cells on Phidippus regius fibers can be primarily attributed to the interplay between the silk's primary protein structure and its mechanical properties. Furthermore, the capacity of silk fibers to trigger cells toward a gene expression profile of a myelinating Schwann cell phenotype is shown. The findings for the first time allow an in‐depth comparison of the specific cellular response to various native spider silks and a correlation with the fibers’ material properties. This knowledge is essential to open up possibilities for targeted manufacturing of synthetic nervous tissue replacement.
more »
« less
This content will become publicly available on April 14, 2026
Native Silk Fibers: Protein Sequence and Structure Influences on Thermal and Mechanical Properties
Silk fibers produced by arthropods have inspired an array of materials with applications in healthcare, medical devices, textiles, and sustainability. Silks exhibit biodiversity with distinct variations in primary protein constituent sequences (fibroins, spidroins) and structures across taxonomic classifications, specifically the Lepidopteran and Araneae orders. Leveraging the biodiversity in arthropod silks offers advantages due to the diverse mechanical properties and thermal stabilities achievable, primarily attributed to variations in fiber crystallinity and repeating amino acid motifs. In this review, we aim to delineate known properties of silk fibers and correlate them with predicted protein sequences and secondary structures, informed by newly annotated genomes. We will discuss established patterns in repeat motifs governing specific properties and underscore the biological diversity within silk fibroin and spidroin sequences. Elucidating the relationship between protein sequences and properties of natural silk fibers will identify strategies for designing new materials through rational silk-based fiber design.
more »
« less
- Award ID(s):
- 2217159
- PAR ID:
- 10591300
- Publisher / Repository:
- ACS Biomacromolecules
- Date Published:
- Journal Name:
- Biomacromolecules
- Volume:
- 26
- Issue:
- 4
- ISSN:
- 1525-7797
- Page Range / eLocation ID:
- 2043 to 2059
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spiders amplify their physical capabilities by synthesizing multiple high performing silks. Renowned for its toughness, major ampullate (MA) silk composes the spiderweb frame, providing support and absorbing high-energy impacts. In ecribellate orb-weavers, proline-rich motifs in MaSp2 proteins of MA silk are linked to a range of mechanical properties, including extensibility, elasticity, stiffness, and supercontraction. We show a modification of these motifs outside of this clade in a spider that constructs a spring-loaded web. The triangle weaver spider Hyptiotes cavatus (family Uloboridae) stores energy in the support lines of its triangular web, then rapidly releases the tension to catapult forward, collapsing the web around prey. Hyptiotes has an expanded set of MaSp2 genes which encode proteins with far higher proline contents than typical MaSp2. The predominant GPGPQ motifs present in Hyptiotes spidroins also occur abundantly in MaSp sequences of distantly related spiders that produce the most extensible dragline, implying silk protein convergence. Proline-rich MaSp2 proteins constitute half of all MA gland expression in Hyptiotes, and we show that the resulting fibers are the most proline-rich spider silk measured to date. This unique silk composition suggests a functional importance that may facilitate the spring-loaded prey capture mechanism of this species' web and may inspire the design of novel biomaterials using protein engineering.more » « less
-
Renewable and degradable materials, formed using biopolymers as material precursors, are sought after in pharmaceutical, biomedical, and industrial fields. Silk-based biomaterials, primarily derived from the silk fibroin protein of the Bombyx mori (B. mori) silkworm, have advantageous mechanical properties, biocompatibility, and commercial availability. Recent efforts aim to expand the range of achievable silk-based biomaterial properties via alternative sources of silk proteins with different sequences and structures. These structural distinctions drive differences in physical and chemical properties of silk fibers, primarily due to the varying degree of crystallinity in the polymers. For the development of alternative silk-based materials, silk from Plodia interpunctella (P. interpunctella), a small agricultural pest that infests and damages food products via silk production, is evaluated. Early investigations have highlighted differences between P. interpunctella and B. mori silk fibroin proteins, however P. interpunctella silk still largely lacks characterization and optimization on both the silk fiber and bulk material level. This work evaluates the structural, thermal, mechanical, and cell-material properties of non-degummed and degummed P. interpunctella silk as a raw material for biomaterial fabrication and discusses the benefits and limitations of these proteins as new biopolymers. Observed properties are used to identify links between silk fibroin protein sequence and fiber function in addition to forming hypotheses in how P. interpunctella silk-based biomaterials will perform in comparison to other natural biopolymers. Future work aims to develop methods to process P. interpunctella silk into material formats, utilizing the material characteristics determined here as a baseline for shifts in material performance.more » « less
-
null (Ed.)Synopsis Many flying insects utilize a membranous structure for flight, which is known as a “wing.” However, some spiders use silk fibers for their aerial dispersal. It is well known that spiders can disperse over hundreds of kilometers and rise several kilometers above the ground in this way. However, little is known about the ballooning mechanisms of spiders, owing to the lack of quantitative data. Recently, Cho et al. discovered previously unknown information on the types and physical properties of spiders’ ballooning silks. According to the data, a crab spider weighing 20 mg spins 50–60 ballooning silks simultaneously, which are about 200 nm thick and 3.22 m long for their flight. Based on these physical dimensions of ballooning silks, the significance of these filament-like structures is explained by a theoretical analysis reviewing the fluid-dynamics of an anisotropic particle (like a filament or a high-slender body). (1) The filament-like structure is materially efficient geometry to produce (or harvest, in the case of passive flight) fluid-dynamic force in a low Reynolds number flow regime. (2) Multiple nanoscale fibers are the result of the physical characteristics of a thin fiber, the drag of which is proportional to its length but not to its diameter. Because of this nonlinear characteristic of a fiber, spinning multiple thin ballooning fibers is, for spiders, a better way to produce drag forces than spinning a single thick spider silk, because spiders can maximize their drag on the ballooning fibers using the same amount of silk dope. (3) The mean thickness of fibers, 200 nm, is constrained by the mechanical strength of the ballooning fibers and the rarefaction effect of air molecules on a nanoscale fiber, because the slip condition on a fiber could predominate if the thickness of the fiber becomes thinner than 100 nm.more » « less
-
Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials. This study aims to compare five different types of silk (Mori, Thai, Muga, Tussah, and Eri) fabricated into thin composite films in conjunction with plant-based proteins. To offer a wider range of morphologies, corn zein, another widely available protein material, was introduced into the silk protein networks to form blended polymers with various ratios of silk to zein. This resulted in the successful alloying of protein from an animal source with protein from a plant source. The material properties were confirmed through structural, morphological, and thermal analyses. FTIR analysis revealed the dominance of intramolecular beta-sheet structures in wild silks, while the domestic silks and zein favored random coil and alpha-helical structures, respectively. Post-treatments using water annealing further refined the structure and morphology of the films, resulting in stable composites with both inter- and intramolecular beta-sheet structures in wild silks. While in domestic silks, the random coils were converted into intermolecular beta-sheets with enhanced beta-sheet crystallinity. This improvement significantly enhanced the thermal and structural properties of the materials. By deciding on the source, ratio, and treatment of these biopolymers, it is possible to tailor protein blends for a wide range of applications in medicine, tissue engineering, food packaging, drug delivery, and bio-optics.more » « less
An official website of the United States government
