skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 30, 2026

Title: In-Space Laser Welding Technology Takes Flight
A recent collaboration led by NASA Marshall Space Flight Center and OSU is pioneering experiments and talent development to push boundaries for in-space manufacturing  more » « less
Award ID(s):
2052747 1822144
PAR ID:
10591311
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AWS
Date Published:
Journal Name:
Welding journal
Volume:
104
Issue:
4
ISSN:
2689-0445
Page Range / eLocation ID:
28-32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Following the global regulation of legacy PFAS molecules, fluorotelomer molecules have been widely employed as replacements to PFOS in aqueous film-forming foam (AFFF) and PFOA in other products. Recent field studies indicate that fluorotelomer molecules are increasingly identified in environmental settings including groundwater, soil and sediments. Consequently, gaining a comprehensive understanding of the fate and transport of fluorotelomers in soils and sedimentary environments is vital. In this study, the behavior of two different fluorotelomers, 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTS and 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTC, in three common soil minerals (kaolinite, montmorillonite and illite) having quite different interfacial properties are reported using molecular dynamics simulations. The interfacial adsorption and dynamical characteristics of 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTS and 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTC vary substantially between the three minerals. Irrespective of the mineral composition, 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTS exhibits surface complexation while 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTC coordinates only with neutral and low charged clay minerals. In addition, the fundamental interactions that dictate the adsorption, interfacial structure of 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTS and 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTC are completely different for the three minerals. The large, aggregated clusters of 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTS at the surface experienced greater stability for longer periods of time and restricted mobility than 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTC for all three clay minerals. Importantly, the current study provides cluster size dependent diffusion behavior of surface adsorbed fluorotelomer molecules in each clay mineral. Such detailed mechanistic insights are necessary to understand the environmental footprint of fluorotelomers around contaminated sites. 
    more » « less
  2. The field of Space Physics has significant recruitment potential. Almost everyone has been fascinated by space in one way or another since their early childhood. From this perspective, Space Physics might be expected to exhibit considerable diversity as a discipline. Regrettably, as in many STEM fields, the reality is quite different. Numerous reasons have been advanced about why the reality and the expectation diverge but one observation we have made over the years stands out, and, that is, that when students are given the opportunity, they are very eager to learn about Space Physics and enthusiastic about working on space physics projects. At The University of Alabama in Huntsville, we have developed a series of outreach programs, including summer programs, that are aimed at bringing students not typically exposed to space physics into the Space Physics community through working on real research projects that have the potential to produce journal publication results. These programs have been very effective in creating interest in Space Physics and have led to the recruitment of students that have been underrepresented historically into our research programs. In this paper, we summarize the various summer programs that the Center for Space Plasma and Aeronomic Research and Department of Space Science at The University of Alabama in Huntsville have been organizing in Space Physics for years and how these programs have contributed to increasing diversity in the field. 
    more » « less
  3. Owing to the ever-present solar wind, our vast solar system is full of plasmas. The turbulent solar wind, together with sporadic solar eruptions, introduces various space plasma processes and phenomena in the solar atmosphere all the way to the Earth's ionosphere and atmosphere and outward to interact with the interstellar media to form the heliopause and termination shock. Remarkable progress has been made in space plasma physics in the last 65 years, mainly due to sophisticated in-situ measurements of plasmas, plasma waves, neutral particles, energetic particles, and dust via space-borne satellite instrumentation. Additionally high technology ground-based instrumentation has led to new and greater knowledge of solar and auroral features. As a result, a new branch of space physics, i.e., space weather, has emerged since many of the space physics processes have a direct or indirect influence on humankind. After briefly reviewing the major space physics discoveries before rockets and satellites, we aim to review all our updated understanding on coronal holes, solar flares and coronal mass ejections, which are central to space weather events at Earth, solar wind, storms and substorms, magnetotail and substorms, emphasizing the role of the magnetotail in substorm dynamics, radiation belts/energetic magnetospheric particles, structures and space weather dynamics in the ionosphere, plasma waves, instabilities, and wave-particle interactions, long-period geomagnetic pulsations, auroras, geomagnetically induced currents (GICs), planetary magnetospheres and solar/stellar wind interactions with comets, moons and asteroids, interplanetary discontinuities, shocks and waves, interplanetary dust, space dusty plasmas and solar energetic particles and shocks, including the heliospheric termination shock. This paper is aimed to provide a panoramic view of space physics and space weather. 
    more » « less
  4. Abstract In this paper, we will discuss the space of functions of weak bounded mean oscillation. In particular, we will show that this space is the dual space of the special atom space, whose dual space was already known to be the space of derivative of functions (in the sense of distribution) belonging to the Zygmund class of functions. We show, in particular, that this proves that the Hardy space H 1 {H}^{1} strictly contains the special atom space. 
    more » « less
  5. Abstract Recent advancements have significantly enhanced the capabilities for in-space servicing, assembly, and manufacturing (ISAM), to develop infrastructure in orbit and on the surface of celestial bodies. This progress is a departure from the traditional sustainability paradigm focused solely on Earth, highlighting the urgent need to define and operationalize the concept of “space sustainability” along with the development of an evaluation framework. The expansion of human activity into space, particularly in low-earth orbit, cis-lunar space, and beyond, underscores the critical importance of considering sustainability implications. Leveraging space resources offers economic growth and sustainable development opportunities, while reducing pressure on Earth’s ecosystems. This paradigm shift requires responsible and ethical utilization of space resources. A space sustainability assessment framework is essential for guiding ISAM capabilities, operations, missions, standards, and policies. This paper introduces an initial framework encompassing (1) pollution, (2) resource depletion, (3) landscape alteration, and (4) space environmental justice, with potential metrics (resources use and emissions, midpoint, and endpoint indicators) to measure impacts in the four domains. 
    more » « less