The Hyper Duplex Stainless Steel HDSS enhanced corrosion resistance and toughness relies upon high alloying to obtain a balanced ferrite and austenite volume and pitting resistance equivalent number PREn. However, during welding, sigma phase precipitates might form, hindering corrosion and mechanical performance. Therefore, a kinetics model is developed to avoid the sigma phase's formation during welding and validated using physical simulation, finite element analysis (FEA), welding, and SEM characterisation. The sigma phase kinetics model produced calculated and validated temperature-time-transformation (TTT) and continuous-cooling-transformation (CCT) curves from which a 4°C/s cooling rate was found as a cooling rate threshold for sigma phase formation in this new material. Three-layered gas tungsten arc welding GTAW cladded mockup with 53 beads produced 24°C/s minimum cooling rate. Moreover, microscopy, mechanical, and corrosion testing attested it as a sigma-free weld.
more »
« less
Effect of sigma phase on CVN impact toughness in HDSS weld metal
This work uses kinetics calculation and a thermomechanical physical simulator to evaluate the sigma phase precipitation in Hyper Duplex Stainless Steel (HDSS) as-welded microstructure for impact toughness evaluation. Precipitation bars were machined out of a HDSS deposited clad mockup and submitted through aging on the thermomechanical physical simulator. Bars with sigma phase volumes of 0 %, 0.16 %, 0.52 %, 0.9 % and 4.3 % were created and machined to sub-size CVN specimens. Through impact CVN testing, complete ductile-to-brittletransition- temperature (DBTT) curves were developed based on absorbed energy (kV), lateral expansion (LE), and shear fracture appearance (SFA) criteria for each sigma phase volume. It was seen that sigma phase presence provides drastic reduction on toughness the HDSS. The DBTT increased from −52.29oC to 38.32oC while the upper shelf energy (USE) is reduced from 68.85J to 11.66J with the increase sigma phase volume. Both the DBTT and USE presented a behavior well fitted through a sigmoidal curve. While very low sigma phase volumes caused little change on the DBTT and USE values, a saturation effect could be inferred on the USE at 4.3 % vol of sigma phase. CVN samples’ secondary cracks high-resolution images suggest that the ferrite and austenite arrest crack propagation while the brittle sigma grains, depending on size and orientation propagate the cracks.
more »
« less
- PAR ID:
- 10591321
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Materials Science and Engineering: A
- Volume:
- 912
- Issue:
- C
- ISSN:
- 0921-5093
- Page Range / eLocation ID:
- 146948
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study focuses on the kinetic analysis of sigma phase formation in filler metal wires on Super Duplex Stainless Steel (SDSS) and Hyper Duplex Stainless Steel (HDSS). Precipitation data reveal that in the solubilized microstructure, sigma phase kinetics are more prominent in SDSS. This increased susceptibility is attributed to the greater number of nucleation sites, which is facilitated by the larger interface area/volume and the higher chromium content in the ferrite. The difference in interface area/volume is significantly more influential in determining kinetics than the composition difference, with nucleation sites playing a central role. The sigma phase transformation in both materials was modeled using the JMAK kinetic law. The JMAK plots exhibit a transition in kinetic mechanisms, evolving from discontinuous precipitation to diffusion-controlled growth. In SDSS, the JMAK values indicate “grain boundary nucleation after saturation,” followed by “thickening of large plates.” In contrast, HDSS values point to “grain edge nucleation after saturation,” followed by “thickening of large needles.” The higher kinetics in SDSS are characterized by a smaller nucleation activation energy of 56.4 kJ/mol, in contrast to HDSS's 490.0 kJ/mol. CALPHAD-based data support the JMAK results, aligning with the maximum kinetics temperature of SDSS (875 °C to 925 °C) and HDSS (900 °C to 925 °C). Therefore, the JMAK sigma phase kinetics effectively describe the experimental data and its dual kinetics behavior, even though CALPHAD-based TTT calculations often overestimate sigma formation.more » « less
-
Additive manufacturing (AM) often results in high strength but poor ductility in titanium alloys. Hybrid AM is a solution capable of improving both ductility and strength. In this study, hybrid AM of Ti-6Al-4 V was achieved by coupling directed energy deposition with interlayer machining. The microstructure, residual stress, and microhardness were examined to explain how interlayer machining caused a 63% improvement in ductility while retaining an equivalent strength to as-printed samples. Interlayer machining introduced recurrent interruptions in printing that allowed for slow cooling-induced coarsening of acicular α laths at the machined interfaces. The coarse α laths on the selectively machined layers increased dislocation motion under tensile loads and improved bulk ductility. The results highlighted in this publication demonstrate the feasibility of hybrid AM to enhance the toughness of titanium alloys.more » « less
-
Molybdenum and its alloys are of interest for applications with extreme thermomechanical requirements such as nuclear energy systems, electronics, aerospace vehicles, and hypersonic vehicles. In the present study, pure molybdenum and samples with added hafnium carbide (HfC) grain refiners were produced using field assisted sintering technology (FAST). The molybdenum and HfC reacted with oxygen to produce MoO2 and HfO2, and increased HfC content from 1 wt% to 5 wt% decreased grain size while the microhardness correspondingly increased. Room temperature three-point bending tests were conducted, and finite element modeling was used to define HfC-dependent bilinear material models. The presence of oxygen most severely affected pure molybdenum, which exhibited little strength and limited ductility, whereas for samples with added HfC, HfO2 was present, resulting in increased toughness hypothesized to be due to microcrack toughening. The samples with 1 wt% added HfC had the greatest energy absorption capability.more » « less
-
Abstract Unlike micromechanics failure models that have a well-defined crack path, phase-field fracture models are capable of predicting the crack path in arbitrary geometries and dimensions by utilizing a diffuse representation of cracks. However, such models rely on the calibration of a fracture energy (Gc) and a regularization length-scale (lc) parameter, which do not have a strong micromechanical basis. Here, we construct the equivalent crack-tip cohesive zone laws representing a phase-field fracture model, to elucidate the effects of Gc and lc on the fracture resistance and crack growth mechanics under mode I K-field loading. Our results show that the cohesive zone law scales with increasing Gc while maintaining the same functional form. In contrast, increasing lc broadens the process zone and results in a flattened traction-separation profile with a decreased but sustained peak cohesive traction over longer separation distances. While Gc quantitatively captures the fracture initiation toughness, increasing Gc coupled with decreasing lc contributes to a rising fracture resistance curve and a higher steady-state toughness—both these effects cumulate in an evolving cohesive zone law with crack progression. We discuss the relationship between these phase-field parameters and process zone characteristics in the material.more » « less
An official website of the United States government

