skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structure and Properties of Na 2 S–SiS 2 –P 2 S 5 –NaPO 3 Glassy Solid Electrolytes
In the development of sodium all-solid-state batteries (ASSBs), research efforts have focused on synthesizing highly conducting and electrochemically stable solid-state electrolytes. Glassy solid electrolytes (GSEs) have been considered very promising due to their tunable chemistry and resistance to dendrite growth. For these reasons, we focus here on the atomic-level structures and properties of GSEs in the compositional series (0.6–0.08y)Na2S + (0.4 + 0.08y)[(1 – y)[(1 – x)SiS2 + xPS5/2] + yNaPO3] (NaPSiSO). The mechanical moduli, glass transition temperatures, and temperature-dependent conductivity were determined and related to their short-range order structures that were determined using Raman, Fourier transform infrared, and 31P and 29Si magic angle spinning nuclear magnetic resonance spectroscopies. In addition, the conductivity activation energies were modeled using the Christensen–Martin–Anderson–Stuart model. These GSEs appear to be highly crystallization-resistant in the supercooled liquid region where no measurable crystallization below 450 °C could be observed in differential scanning calorimetry studies. Additionally, these GSEs were found to be highly conducting, with conductivities on the order of 10–5 (Ω cm)−1 at room temperature, and processable in the supercooled state without crystallization. For all these reasons, these NaPSiSO GSEs are considered to be highly competitive and easily processable candidate GSEs for enabling sodium ASSBs.  more » « less
Award ID(s):
1936913
PAR ID:
10591416
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
63
Issue:
20
ISSN:
0020-1669
Page Range / eLocation ID:
9129 to 9144
Subject(s) / Keyword(s):
Amorphous materials Electrical conductivity Oxygen Silicon Sodium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Na4P2S7-6xO4.62xN0.92x (NaPSON) glassy solid electrolytes (GSEs) were prepared and tested for their electrochemical properties and processability into thin films. The x = 0.2 composition (NaPSON-2) was found to be highly conducting, non-crystallizable, largely stable against Na-metal and supports symmetric cell cycling up to >100 µA cm-2 without shorting and for these reasons was processed into thin films drawn to 50 m and tested in symmetric and asymmetric cells. Measurements of the sodium ion conductivity using symmetric cells demonstrated that the conductivity of NaPSON-2 was unchanged by film forming. Galvanostatic cycling at 5 A cm-2 of 1.3 mm NaPSON-2 showed stability over 450 hours, while cycling a 50 m thin film showed a very slow growth in the resistance. Cyclic voltammetry and x-ray photoelectron spectroscopy of the NaPSON-2 thin film GSE revealed that it did not react with Na-metal at its surface, but rather in the bulk of the film, showing S, Na2S, and Na3P reaction products. The source of the surface stability was determined to be the preferential segregation of trigonally coordinated nitrogen. These low-cost and easily processed NaPSON GSEs provide a system of materials which could provide for significantly lower cost higher energy density grid-scale batteries. 
    more » « less
  2. Sulfide-based solid electrolytes (SEs) are emerging as compelling materials for all-solid-state batteries (ASSBs), primarily due to their high ionic conductivities and robust mechanical stability. In particular, glassy SEs (GSEs) comprising mixed Si and P glassformers show promise, thanks to their efficient synthesis process and their intrinsic ability to prevent lithium dendrite growth. However, to date the complexity of their glassy structures hinders a complete understanding of the relationships between their structures and properties. Here, new machine learning force field (ML- FF) specifically designed for lithium sulfide-based GSEs has been developed. This ML-FF has been used to investigate the structural characteristics, mechanical properties, and lithium ionic conductivities in binary lithium thiosilicate and lithium thiophosphate GSEs, as well as their ternary mixed glassformer (MGF) lithium thiosilicophosphate GSEs. Molecular dynamic (MD) simulations using the ML-FF were conducted to explore the glass structures in varying compositions, including binary Li2S-SiS2 and Li2S-P2S5, as well as ternary Li2S-SiS2-P2S5. The simulations with the ML-FF yielded consistent results in terms of density, elastic modulus, radial distribution functions, and neutron structure factors, compared to DFT and experimental work. A key focus of this study was to investigate the local environments of Si and P molecular clusters. We discovered that most Si atoms in the Li2S-SiS2 GSE are situated in an edge-sharing environment, while the Li2S-P2S5 glass contained a minor proportion of edge-sharing P2S62- environments. In the ternary 60Li2S-32SiS2-8P2S5 glass, the ML-FF predicted similar P environments as observed in the binary Li2S-P2S5 glass. Additionally, it indicated the coexistence of corner and edge-sharing between PS4 and SiS4 tetrahedra in this ternary composition. Concerning lithium ionic conductivity at 300K, all studied glass compositions exhibited similar magnitudes and followed the Arrhenius relationship. The 50Li2S-50SiS2 glass displayed the lowest conductivity at 2.1 mS/cm, while the 75Li2S-25P2S5 composition exhibited the highest at 3.6 2 mS/cm. The ternary glass showed a conductivity of 2.57 mS/cm, sitting between the two. Interestingly, the predicted conductivities were about an order of magnitude higher than experimental values for the binary glasses but aligning more closely with that of the ternary glass. Moreover, an in-depth analysis of lithium-ion diffusion over the MD trajectory in the ternary glass demonstrated a significant correlation between diffusion pathways and the rotational dynamics of nearby SiS4 or PS4 tetrahedra. The ML-FF developed in this study shows immense potential as a versatile tool for exploring a broad spectrum of solid-state and mixed-former sulfide-based electrolytes. 
    more » « less
  3. Amorphous Li 3 PS 4 (LPS) solid-state electrolytes are promising for energy-dense lithium metal batteries. LPS glass, synthesized from a 3 : 1 mol ratio of Li 2 S and P 2 S 5 , has high ionic conductivity and can be synthesized by ball milling or solution processing. Ball milling has been attractive because it provides the easiest route to access amorphous LPS with a conductivity of 3.5 × 10 −4 S cm −1 (20 °C). However, achieving the complete reaction of precursors via ball milling can be difficult, and most literature reports use X-ray diffraction (XRD) or Raman spectroscopy to confirm sample purity, both of which have limitations. Furthermore, the effect of residual precursors on ionic conductivity and lithium metal cycling is unknown. In this work, we illustrate the importance of multimodal characterization to determine LPS phase and chemical purity. To determine the residual Li 2 S content in LPS, we show that (1) XRD and 31 P solid state nuclear magnetic resonance (ssNMR) are insufficient and (2) Raman loses sensitivity at concentrations below 12 mol% Li 2 S. Most importantly, we show that 7 Li ssNMR is highly sensitive. Using 7 Li ssNMR, we investigate the effect of ball milling parameters and develop a robust and highly reproducible procedure for pure LPS synthesis. We find that as the residual Li 2 S precursor content increases, LPS conductivity decreases and lithium metal batteries exhibit higher overpotentials and poor cycle life. Our work reveals the importance of multimodal characterization techniques for amorphous solid-state electrolyte characterization and will enable better synthetic strategies for highly conductive electrolytes for efficient energy-dense solid-state lithium metal batteries. 
    more » « less
  4. Hybrid solid electrolytes are composed of organic (polymer) and inorganic (ceramic) ion conducting materials, and are promising options for large-scale production of solid state lithium–metal batteries. Hybrid solid electrolytes containing 15 vol% Al-LLZO demonstrate optimal ionic conductivity properties. Ionic conductivity is shown to decrease at high inorganic loadings. This optimum is most obvious above the melting temperature of polyethylene oxide where the polymer is amorphous. Structural analysis using synchrotron nanotomography reveals that the inorganic particles are highly aggregated. The aggregation size grows with inorganic content and the largest percolating clusters measured for 5 vol%, 15 vol% and 50 vol% were ∼12 μm 3 , 206 μm 3 , and 324 μm 3 , respectively. Enhanced transport in hybrid electrolytes is shown to be due to polymer|particle (Al-LLZO) interactions and ionic conductivity is directly related to the accessible surface area of the inorganic particles within the electrolyte. Ordered and well-dispersed structures are ideal for next generation hybrid solid electrolytes. 
    more » « less
  5. Na-ion conducting solid electrolytes can enable both the enhanced safety profile of all-solid-state-batteries and the transition to an earth-abundant charge-carrier for large-scale stationary storage. In this work, we developed new perovskite-structured Na-ion conductors from the analogous fast Li-ion conducting Li 3 x La 2/3− x TiO 3 (LLTO), testing strategies of chemo-mechanical and defect engineering. Na x La 2/3−1/3 x ZrO 3 (NLZ) and Na x La 1/3−1/3 x Ba 0.5 ZrO 3 (NLBZ) were prepared using a modified Pechini method with varying initial stoichiometries and sintering temperatures. With the substitution of larger framework cations Zr 4+ and Ba 2+ on B- and A-sites respectively, NLZ and NLBZ both had larger lattice parameters compared to LLTO, in order to accommodate and potentially enhance the transport of larger Na ions. Additionally, we sought to introduce Na vacancies through (a) sub-stoichiometric Na : La ratios, (b) Na loss during sintering, and (c) donor doping with Nb. AC impedance spectroscopy and DC polarization experiments were performed on both Na 0.5 La 0.5 ZrO 3 and Na 0.25 La 0.25 Ba 0.5 ZrO 3 in controlled gas environments (variable oxygen partial pressure, humidity) at elevated temperatures to quantify the contributions of various possible charge carriers (sodium ions, holes, electrons, oxygen ions, protons). Our results showed that the lattice-enlarged NLZ and NLBZ exhibited ∼19× (conventional sintering)/49× (spark plasma sintering) and ∼7× higher Na-ion conductivities, respectively, compared to unexpanded Na 0.42 La 0.525 TiO 3 . Moreover, the Na-ion conductivity of Na 0.5 La 0.5 ZrO 3 is comparable with that of NaNbO 3 , despite having half the carrier concentration. Additionally, more than 96% of the total conductivity in dry conditions was contributed by sodium ions for both compositions, with negligible electronic conductivity and little oxygen ion conductivity. We also identified factors that limited Na-ion transport: NLZ and NLBZ were both challenging to densify using conventional sintering without the loss of Na because of its volatility. With spark plasma sintering, higher density can be achieved. In addition, the NLZ perovskite phase appeared unable to accommodate significant Na deficiency, whereas NLBZ allowed some. Density functional theory calculations supported a thermodynamic limitation to creation of Na-deficient NLZ in favor of a pyrochlore-type phase. Humid environments generated different behavior: in Na 0.25 La 0.25 Ba 0.5 ZrO 3 , incorporated protons raised total conductivity, whereas in Na 0.5 La 0.5 ZrO 3 , they lowered total conductivity. Ultimately, this systematic approach revealed both effective approaches and limitations to achieving super-ionic Na-ion conductivity, which may eventually be overcome through alternative processing routes. 
    more » « less