skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncalled4 improves nanopore DNA and RNA modification detection via fast and accurate signal alignment
Abstract Nanopore signal analysis enables detection of nucleotide modifications from native DNA and RNA sequencing, providing both accurate genetic or transcriptomic and epigenetic information without additional library preparation. At present, only a limited set of modifications can be directly basecalled (for example, 5-methylcytosine), while most others require exploratory methods that often begin with alignment of nanopore signal to a nucleotide reference. We present Uncalled4, a toolkit for nanopore signal alignment, analysis and visualization. Uncalled4 features an efficient banded signal alignment algorithm, BAM signal alignment file format, statistics for comparing signal alignment methods and a reproducible de novo training method fork-mer-based pore models, revealing potential errors in Oxford Nanopore Technologies’ state-of-the-art DNA model. We apply Uncalled4 to RNA 6-methyladenine (m6A) detection in seven human cell lines, identifying 26% more modifications than Nanopolish using m6Anet, including in several genes where m6A has known implications in cancer. Uncalled4 is available open source atgithub.com/skovaka/uncalled4.  more » « less
Award ID(s):
2216612
PAR ID:
10591503
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Methods
Volume:
22
Issue:
4
ISSN:
1548-7091
Page Range / eLocation ID:
681 to 691
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Direct-sequencing technologies, such as Oxford Nanopore’s, are delivering long RNA reads with great efficacy and convenience. These technologies afford an ability to detect post-transcriptional modifications at a single-molecule resolution, promising new insights into the functional roles of RNA. However, realizing this potential requires new tools to analyze and explore this type of data. Result Here, we present Sequoia, a visual analytics tool that allows users to interactively explore nanopore sequences. Sequoia combines a Python-based backend with a multi-view visualization interface, enabling users to import raw nanopore sequencing data in a Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to identify properties of interest. We demonstrate the application of Sequoia by generating and analyzing ~ 500k reads from direct RNA sequencing data of human HeLa cell line. We focus on comparing signal features from m6A and m5C RNA modifications as the first step towards building automated classifiers. We show how, through iterative visual exploration and tuning of dimensionality reduction parameters, we can separate modified RNA sequences from their unmodified counterparts. We also document new, qualitative signal signatures that characterize these modifications from otherwise normal RNA bases, which we were able to discover from the visualization. Conclusions Sequoia’s interactive features complement existing computational approaches in nanopore-based RNA workflows. The insights gleaned through visual analysis should help users in developing rationales, hypotheses, and insights into the dynamic nature of RNA. Sequoia is available at https://github.com/dnonatar/Sequoia . 
    more » « less
  2. Direct nanopore-based RNA sequencing can be used to detect posttranscriptional base modifications, such as N6-methyladenosine (m6A) methylation, based on the electric current signals produced by the distinct chemical structures of modified bases. A key challenge is the scarcity of adequate training data with known methylation modifications. We present Xron, a hybrid encoder–decoder framework that delivers a direct methylation-distinguishing basecaller by training on synthetic RNA data and immunoprecipitation (IP)-based experimental data in two steps. First, we generate data with more diverse modification combinations through in silico cross-linking. Second, we use this data set to train an end-to-end neural network basecaller followed by fine-tuning on IP-based experimental data with label smoothing. The trained neural network basecaller outperforms existing methylation detection methods on both read-level and site-level prediction scores. Xron is a standalone, end-to-end m6A-distinguishing basecaller capable of detecting methylated bases directly from raw sequencing signals, enabling de novo methylome assembly. 
    more » « less
  3. Abstract The amount of data produced by genome sequencing experiments has been growing rapidly over the past several years, making compression important for efficient storage, transfer and analysis of the data. In recent years, nanopore sequencing technologies have seen increasing adoption since they are portable, real-time and provide long reads. However, there has been limited progress on compression of nanopore sequencing reads obtained in FASTQ files since most existing tools are either general-purpose or specialized for short read data. We present NanoSpring, a reference-free compressor for nanopore sequencing reads, relying on an approximate assembly approach. We evaluate NanoSpring on a variety of datasets including bacterial, metagenomic, plant, animal, and human whole genome data. For recently basecalled high quality nanopore datasets, NanoSpring, which focuses only on the base sequences in the FASTQ file, uses just 0.35–0.65 bits per base which is 3–6$$\times$$ × lower than general purpose compressors like gzip. NanoSpring is competitive in compression ratio and compression resource usage with the state-of-the-art tool CoLoRd while being significantly faster at decompression when using multiple threads (> 4$$\times$$ × faster decompression with 20 threads). NanoSpring is available on GitHub athttps://github.com/qm2/NanoSpring. 
    more » « less
  4. Abstract BackgroundAdding sequences into an existing (possibly user-provided) alignment has multiple applications, including updating a large alignment with new data, adding sequences into a constraint alignment constructed using biological knowledge, or computing alignments in the presence of sequence length heterogeneity. Although this is a natural problem, only a few tools have been developed to use this information with high fidelity. ResultsWe present EMMA (Extending Multiple alignments using MAFFT--add) for the problem of adding a set of unaligned sequences into a multiple sequence alignment (i.e., a constraint alignment). EMMA builds on MAFFT--add, which is also designed to add sequences into a given constraint alignment. EMMA improves on MAFFT--add methods by using a divide-and-conquer framework to scale its most accurate version, MAFFT-linsi--add, to constraint alignments with many sequences. We show that EMMA has an accuracy advantage over other techniques for adding sequences into alignments under many realistic conditions and can scale to large datasets with high accuracy (hundreds of thousands of sequences). EMMA is available athttps://github.com/c5shen/EMMA. ConclusionsEMMA is a new tool that provides high accuracy and scalability for adding sequences into an existing alignment. 
    more » « less
  5. Abstract Ground-based high-resolution cross-correlation spectroscopy (HRCCS;R ≳ 15,000) is a powerful complement to space-based studies of exoplanet atmospheres. By resolving individual spectral lines, HRCCS can precisely measure chemical abundance ratios, directly constrain atmospheric dynamics, and robustly probe multidimensional physics. But the subtleties of HRCCS data sets—e.g., the lack of exoplanetary spectra visible by eye and the statistically complex process of telluric removal—can make interpreting them difficult. In this work, we seek to clarify the uncertainty budget of HRCCS with a forward-modeling approach. We present an HRCCS observation simulator,scope,55https://github.com/arjunsavel/scopethat incorporates spectral contributions from the exoplanet, star, tellurics, and instrument. This tool allows us to control the underlying data set, enabling controlled experimentation with complex HRCCS methods. Simulating a fiducial hot Jupiter data set (WASP-77Ab emission with IGRINS), we first confirm via multiple tests that the commonly used principal component analysis does not bias the planetary signal when few components are used. Furthermore, we demonstrate that mildly varying tellurics and moderate wavelength solution errors induce only mild decreases in HRCCS detection significance. However, limiting-case, strongly varying tellurics can bias the retrieved velocities and gas abundances. Additionally, in the low signal-to-noise ratio limit, constraints on gas abundances become highly non-Gaussian. Our investigation of the uncertainties and potential biases inherent in HRCCS data analysis enables greater confidence in scientific results from this maturing method. 
    more » « less