skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: A BRASSINOSTEROID INSENSISTIVE 1 receptor kinase ortholog is required for sex determination in Ceratopteris richardii
Most ferns, unlike all seed plants, are homosporous and produce sexually undifferentiated spores. Sex ratio in many homosporous species is environmentally established by the secretion of antheridiogen from female/hermaphrodite gametophytes. Nearby undetermined gametophytes perceive antheridiogen, which induces male development. In the fern Ceratopteris richardii (Ceratopteris), hermaphroditic (her) mutants develop as hermaphrodites even in the presence of antheridiogen. Modern sequencing and genomic tools make the molecular identification of mutants in the 11-Gbp genome of this fern possible. We mapped 2 linked mutants, her7-14 and her7-19, to the same 16-Mbp interval on chromosome 29 of the Ceratopteris genome. An ortholog of the receptor kinase gene BRASSINOSTEROID INSENSITIVE 1 (BRI1) within this interval encoded a deletion mutation in her7-14 and a missense mutation in her7-19. Three other linked her mutants encoded missense mutations in the same gene, which we name HER7. Consistent with a function as a receptor kinase, HER7-GFP fusion protein localized to the plasma membrane and cytoplasm. Analysis of gene expression showed that brassinosteroid biosynthesis was upregulated in hermaphrodites compared with male gametophytes. Our work demonstrates that HER7 is required for sex determination in Ceratopteris and opens avenues for studying the evolution of antheridiogen systems.  more » « less
Award ID(s):
1931114
PAR ID:
10591604
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
OUP
Date Published:
Journal Name:
The Plant Cell
Volume:
37
Issue:
5
ISSN:
1040-4651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most land plants alternate between generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, fern gametophytes are free-living and grow independently of their sporophytes. In homosporous ferns like Ceratopteris, gametophytes derived from genetically identical spores exhibit sexual dimorphism, developing as either males or hermaphrodites. Males lack meristems and promote cell differentiation into sperm-producing antheridia. In contrast, hermaphrodites initiate multicellular meristems that stay undifferentiated, sustain cell division and prothallus expansion, and drive the formation of egg-producing archegonia. Once initiating the meristem, hermaphrodites secrete the pheromone antheridiogen, which triggers neighboring slower-growing gametophytes to develop as males, while the hermaphrodites themselves remain insensitive to antheridiogen. This strategy promotes outcrossing and prevents all individuals in the colony from becoming males. This study reveals that an evolutionarily conserved GRAS domain transcriptional regulator (CrHAM), directly repressed by Ceratopteris microRNA171 (CrmiR171), promotes meristem development in Ceratopteris gametophytes and determines the male-to-hermaphrodite ratio in the colony. CrHAM preferentially accumulates within the meristems of hermaphrodites but is excluded from differentiated antheridia. CrHAM sustains meristem proliferation and cell division through conserved hormone pathways. In the meantime, CrHAM inhibits the antheridiogen-induced conversion of hermaphrodites to males by suppressing the male program expression and preventing meristem cells from differentiating into sperm-producing antheridia. This finding establishes a connection between meristem indeterminacy and sex determination in ferns, suggesting both conserved and diversified roles of meristem regulators in land plants. 
    more » « less
  2. Summary Sex expression of homosporous ferns is controlled by multiple factors, one being the antheridiogen system. Antheridiogens are pheromones released by sexually mature female fern gametophytes, turning nearby asexual gametophytes precociously male. Nevertheless, not all species respond. It is still unknown how many fern species use antheridiogens, how the antheridiogen system evolved, and whether it is affected by polyploidy and/or apomixis.We tested the response of 68 fern species to antheridiogens in cultivation. These results were combined with a comprehensive review of literature to form the largest dataset of antheridiogen interactions to date. Analyzed species also were coded as apomictic or sexual and diploid or polyploid.Our final dataset contains a total of 498 interactions involving 208 species (c. 2% of all ferns). About 65% of studied species respond to antheridiogen. Multiple antheridiogen types were delimited and their evolution is discussed. Antheridiogen responsiveness was not significantly affected by apomixis or polyploidy.Antheridiogens are widely used by ferns to direct sex expression. The antheridiogen system likely evolved multiple times and provides homosporous ferns with the benefits often associated with heterospory, such as increased rates of outcrossing. Despite expectations, antheridiogens may be beneficial to polyploids and apomicts. 
    more » « less
  3. Land plants alternate between asexual sporophytes and sexual gametophytes. Unlike seed plants, ferns develop free-living gametophytes. Gametophytes of the model fern Ceratopteris exhibit two sex types: hermaphrodites with pluripotent meristems and males lacking meristems. In the absence of the pheromone antheridiogen, males convert to hermaphrodites by forming de novo meristems, although the mechanisms remain unclear. Using long-term time-lapse imaging and computational analyses, we captured male-to-hermaphrodite conversion at single-cell resolution and reconstructed the lineage and division atlas of newly formed meristems. Lineage tracing revealed that the de novo-formed meristem originates from a single non-antheridium cell: the meristem progenitor cell (MPC). During conversion, the MPC lineage showed increased mitotic activity, with marginal cells proliferating faster than inner cells. A mathematical model suggested that stochastic variation in cell division, combined with strong inhibitory signals from dividing marginal cells, is sufficient to explain gametophyte dynamics. Experimental disruption of division timing agreed with the model, showing that precise cell cycle progression is essential for MPC establishment and sex-type conversion. These findings reveal cellular mechanisms governing sex conversion and de novo meristem formation in land plants. 
    more » « less
  4. Abstract PremiseAntheridiogen systems are a set of pheromonal mechanisms that control sex expression in fern gametophytes. However, antheridiogen has rarely been studied outside of the laboratory, and little is known about its function in natural settings. Combining predictions based on field and laboratory study, we tested whether the sexual structure of gametophytic colonies of a tree fern were attributable to antheridiogen. MethodsGametophytic colonies of the antheridiogen‐producing tree fernCyathea multiflorawere collected at La Selva Biological Station in Costa Rica in January 2019. The sex of each gametophyte was determined, mapped, and spatial statistic approaches were used to examine the distribution of sex in each colony. ResultsIn all gametophytic colonies, males were most common, representing 62–68% of individuals. No hermaphroditic gametophytes were identified in any colony. A quadrat‐based method showed female gametophytes were not clustered in each colony, while male gametophytes were clustered. In two of the colonies, theK(r) test statistic for males was greater than expected compared to random simulations of sex expression, indicating male sex expression was spatially associated with females. ConclusionsThis study provides the first documentation of spatial sex expression in natural settings of gametophytes of an antheridiogen‐producing tree fern species. The profound impact of antheridiogen on gametophytic sex expression in field settings suggests this system is intimately tied to mating system, fitness, and genetic diversity inCyathea multiflora. 
    more » « less
  5. Abstract The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii . The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology. 
    more » « less