skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of density and slope angle on internal erosion in an unsaturated clayey sand slope
Soil piping (concentrated leak erosion) is a major contributor to soil erosion in many parts of the world, and collapse of eroded pipes can result in the formation of gullies and sinkholes or trigger slope instability. Despite these significant impacts, there is little understanding of factors controlling pipe collapse, and how water within the pipe influences moisture levels within a slope. In this study, physical models were employed on unsaturated model slopes with pre-formed macropores to investigate how soil properties, pipe characteristics, and hydraulic conditions govern internal erosion processes and slope stability. Experiments simulated shallow field conditions (0.45 m overburden) using 4 mm and 12 mm pipes to establish preferential flow paths, while varying model parameters including initial compaction moisture content and density, pipe condition (absent, closed, or open), slope angle, and model width. Volumetric water content sensors monitored moisture evolution, while cameras captured slope responses to subsurface flow. Results demonstrate that initial compaction conditions (water content and density), pipe size, hydraulic connectivity, and pipe condition control internal erosion processes and slope stability.  more » « less
Award ID(s):
2047402
PAR ID:
10591608
Author(s) / Creator(s):
; ;
Publisher / Repository:
Designsafe-CI
Date Published:
Subject(s) / Keyword(s):
Internal erosion Landslides Unsaturated soil mechanics Physical models Concentrated leak erosion
Format(s):
Medium: X
Institution:
Auburn University Geotechnical Laboratory
Sponsoring Org:
National Science Foundation
More Like this
  1. Rathje, Ellen; Montoya, Brina M.; Wayne, Mark H. (Ed.)
    Soil piping is the gradual and progressive erosion of soil grains, causing a void (open pipe) to form as water flows through the soil. In dam engineering, this type of internal erosion is often referred to as concentrated leak erosion and has been a cause of failure at multiple dams. Soil piping has also been observed in many landslides and contributes significantly to soil degradation in hillslopes and agricultural areas. Despite these many important impacts, there is still limited understanding of how soil pipes develop and progress and what factors control pipe stability. One of the significant challenges with analyzing soil piping, or concentrated leak erosion, is that it typically occurs in the vadose zone, where unsaturated conditions are present. However, most studies examining internal erosion have focused on saturated conditions, and few studies have examined the role unsaturated hydraulic properties (i.e., air entry value, matric suction, etc.) may play in the likelihood of internal erosion. Consequently, this study aims to explore the mechanisms controlling the erosion rate within soil pipes from the perspective of unsaturated soil mechanics. Bench-scale experiments were performed to examine the formation and progression of an eroded pipe in a small slope constructed at different water contents. Soil samples were also tested to measure its unsaturated hydraulic properties. The results show that the likelihood of pipe formation varies with the moisture content and, therefore, suction in the soil, as does the potential for pipe collapse. This demonstrates that unsaturated soil properties are key to understanding the formation and progression of piping in slopes. 
    more » « less
  2. Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the detachment, transport, and redistribution of soil particles under varying infiltration pressures and pipe defect geometries. Using ANSYS Fluent (CFD) and Rocky (DEM), the simulation resolves both the fluid flow field and granular particle dynamics, capturing erosion cavity formation, void evolution, and soil particle transport in three dimensions. The results reveal that increased infiltration pressure and defect size in the buried pipe significantly accelerate the process of erosion and sinkhole formation, leading to potentially unstable subsurface conditions. Visualization of particle migration, sinkhole development, and soil velocity distributions provides insight into the mechanisms driving localized failure. The findings highlight the importance of considering fluid–particle interactions and defect characteristics in the design and maintenance of buried structures, offering a predictive basis for assessing erosion risk and infrastructure vulnerability. 
    more » « less
  3. Soil erosion by wind has been found to be negatively related to soil water content, as evidenced by that for a given area, such a soil erosion can be much less in a wet than a dry year. However, few studies have examined the functional relationship between wind erosion and soil moisture, primarily due to lack of field measured data. The objectives of this study were to: 1) measure wind erosion in field using a portable wind tunnel devised and made by the authors; and 2) use the measured data to calibrate/validate a wind erosion model previously developed by the authors. The study was conducted in the steppe grassland within the Balaguer watershed located in north China. As part of a larger project funded by National Science Foundation, this study focused on soil conditions with a minimal vegetation coverage to understand the functional relationship between wind erosion, soil moisture, and climate. These conditions are similar with those when the grassland degrades and ultimately becomes deserted. Field samples were analyzed in laboratory to determine the soil characteristics (e.g., moisture content, texture, hydraulic conductivity, and organic content). In this conference, we will present our portable wind tunnel, measured data, and the wind erosion model and its predictions. 
    more » « less
  4. Due to cyclic wetting and drying, the hydro-mechanical behavior of unsaturated soil is impacted significantly. In order to assess the soil strength parameters, knowing the unsaturated behavior is important. Soil moisture content is an important parameter that can define the shear strength of the soil. Most of the highway slopes of Mississippi are built on highly expansive clay. During summer, the evaporation of moisture in the soil leads to shrinkage and the formation of desiccation cracks, while during rainfall, the soil swells due to the infiltration of water. In addition to this, the rainwater gets trapped in these cracks and creates perched conditions, leading to the increased moisture content and reduced shear strength of slope soil. The increased precipitation due to climate change is causing failure conditions on many highway slopes of Mississippi. Vetiver, a perennial grass, can be a transformative solution to reduce the highway slope failure challenges of highly plastic clay. The grass has deep and fibrous roots, which provide additional shear strength to the soil. The root can uptake a significant amount of water from the soil, keeping the moisture balance of the slope. The objective of the current study is to assess the changes in moisture contents of a highway slope in Mississippi after the Vetiver plantation. Monitoring equipment, such as rain gauges and moisture sensors, were installed to monitor the rainfall of the area and the moisture content of the soil. The data showed that the moisture content conditions were improved with the aging of the grass. The light detection and ranging (LiDAR) analysis was performed to validate the field data obtained from different sensors, and it was found that there was no significant slope movement after the Vetiver plantation. The study proves the performance of the Vetiver grass in improving the unsaturated soil behavior and stability of highway slopes built on highly expansive clay. 
    more » « less
  5. Backward erosion piping (BEP) has been recognised as a major cause of failures in water-retaining structures. However, the fundamental mechanisms controlling the phenomenon are not well understood. This research applies the theory of rate processes to develop a constitutive relationship between energy density of the seepage flow and the erosion rate of soils during the evolution of BEP. The resulting equation is used to analyse four datasets of previously reported experimental observations. The mechanical parameters estimated through the proposed model fall into the ranges of values that were reported in the literature. To validate the proposed approach, the constitutive model was incorporated into a multiphase numerical framework to simulate evolution of BEP in embankment soil and compared with reported experimental observations. The numerical framework with the proposed constitutive model is shown to be capable of reproducing both the observed evolution of local hydraulic gradients and pipe progression in the structure. 
    more » « less