skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Core excitation in 92 Mo up to high spin
Abstract An in-beam gamma-ray spectroscopy study of the even–even nucleus92Mo has been carried out using the30Si +65Cu,18O +80Se reactions at beam energies of 120 and 99 MeV, respectively. Angular distribution from the oriented state ratio (RADO) and linear polarization (Δasym) measurements have fixed most of the tentatively assigned spin-parity of the high-energy levels. A large-scale shell-model calculation using the GWBXG interaction has been carried out to understand the configuration and structure of both positive and negative parity states up to the highest observed spin. The high-spin states primarily originate from the coupling of excited proton- and neutron-core structures in an almost stretched manner. The systematics of the energy required to form a neutron particle-hole pair excitation,νg9/2→νd5/2, is discussed. The lifetimes of a few high-spin states have been measured using the Doppler shift attenuation method. Additionally, a qualitative argument is proposed to explain the comparatively strong E1 transition feeding the 7310.9 keV level.  more » « less
Award ID(s):
2310059
PAR ID:
10591710
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics G: Nuclear and Particle Physics
Volume:
52
Issue:
2
ISSN:
0954-3899
Page Range / eLocation ID:
025101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The cooling strength of the Urca pair,63Fe–63Mn, exhibits an extensive range of variation due to the uncertainty in the spin parity of the ground state of63Fe. To investigate the cooling effect of this Urca pair on the thermal evolution of neutron star crusts, we performed simulations on neutron star structure and evolution under various spin-parity assignment scenarios. When adopting recently evaluated nuclear data,63Fe–63Mn emerges as one of the strongest Urca pairs. In the case of MAXI J0556-332,63Fe–63Mn is the only pair above the shallow heating layer, significantly impacting the cooling curve and the superburst ignition. Moreover, the constraint on the past nucleosynthesis reduced to one-quarter of its original value, falling within three decades, which enables the validation of nuclear reaction theories in the outer layers of neutron stars. Our results highlight the need for more precise measurements of theβdecay of63Mn to better determine the Urca cooling effect of the63Fe–63Mn pair in accreted neutron star crusts. 
    more » « less
  2. Abstract We measured the rotationally resolved infrared spectra of helium solvated methyl fluoride at 3 μm and 10 μm, wherein lies C−H and C−F stretching bands, respectively. The linewidths (FWHM) were found to increase with increasing vibrational energy and range from 0.002 cm−1in thev3band (C−F stretch) at ~1047 cm−1, to 0.65 cm−1in thev4band (asymmetric C−H stretch) at ~2997 cm−1. In between these two bands we observed the lower and upper components of the Fermi triad bands (ν1/2ν2/2ν5) at ~2859 and ~2961 cm−1. We carried out Stark spectroscopy on the lower band on account of its narrower linewidths (0.04 vs. 0.14 cm−1, respectively). The objective of performing Stark spectroscopy was to see if there is any evidence for a rotational linewidth dependence on the external field strength, due to a reduced difference in between methyl fluorides rotational energy gap and the roton‐gap of superfluid helium. We did not find any evidence for such an effect, which we largely attribute to the rotational energy gap not increasing significantly enough by the external field. We point to another molecule (formaldehyde) whose energy levels are predicted to show a more promising response to application of an external field. 
    more » « less
  3. Abstract A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant. 
    more » « less
  4. Mattoon, C.M.; Vogt, R.; Escher, J.; Thompson, I. (Ed.)
    The cross-section of the thermal neutron capture41Ar(n,γ)42Ar(t1/2=32.9 y) reaction was measured by irradiating a40Ar sample at the high-flux reactor of Institut Laue-Langevin (ILL) Grenoble, France. The signature of the two-neutron capture has been observed by measuring the growth curve and identifying the 1524.6 keV γ-lines of the shorter-lived42K(12.4 h) βdaughter of42Ar. Our preliminary value of the41Ar(n,γ)42Ar thermal cross section is 240(80) mb at 25.3 meV. For the first time, direct counting of42Ar was performed using the ultra-high sensitivity technique of noble gas accelerator mass spectrometry (NOGAMS) at Argonne National Laboratory, USA. 
    more » « less
  5. Abstract We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1‐N‐ynamide ligand, [(BDI)V{κ1‐N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2‐C,N‐azaalleneyl ligand, [(dBDI)V{κ2‐N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2. 
    more » « less