Risk propensity, or individuals’ attitude toward risk, can highly impact individuals’ decision-making in high-risk environments since those who merely focus on positive consequences associated with high-risk acts are more likely to engage in risk-taking behaviors. Previous studies identified activation in the prefrontal cortex during decision-making under risk to be a sign of an individual’s attitude toward risks. To investigate whether such past work—prevalent in behavioral research domains—translates into construction safety, this study conducted an experiment in a mixed-reality environment using functional near-infrared spectroscopy (fNIRS) technology to examine whether positive risk attitudes cause individuals to adopt risky construction behaviors and whether the activation of the prefrontal cortex of the brain can represent such risk attitudes. The results show that participants with a higher risk propensity had a higher brain activation during the risky electrical tasks; these individuals merely focused on gains, which motivated them to increase their risk-taking behavior and consequently experience more electrical accidents. Understanding workers’ attitudes toward risk will thus influence future understandings of decision behavior under risk.
more »
« less
Effects of maternal separation on punishment-driven risky decision making in adolescence and adulthood
Early life adversity (ELA) is associated with a multitude of neural and behavioral aberrations. To develop treatments to mitigate the effects of ELA, it is critical to determine which aspects of cognition are affected and when these disturbances manifest across the lifespan. Here, we tested the effects of maternal separation, an established rodent model of ELA, on punishment-driven risky decision-making longitudinally in both adolescence (25–55 days old) and adulthood (80–100 days old). Risk-taking was assessed with the Risky Decision-making Task, wherein rats choose between a small, safe reward and a large reward accompanied by an escalating risk of punishment (foot shock). We observed that rats exposed to maternal separation were more prone to risk-taking than controls during adolescence, and demonstrated reduced latency to make both risky and safe decisions. Interestingly, this augmented risk-taking was no longer evident in adulthood. Males and females displayed comparable levels of risk-taking during adolescence then diverged in adulthood, with adult males displaying a sharp increase in risk-taking. Finally, we observed that risk-taking changed across the lifespan in rats exposed to maternal separation, but not in control rats. Collectively, these data reveal that ELA engenders risk-taking in adolescence but not adulthood, and that sex differences in risky decision-making are not evident until adulthood. This has important implications for the development of both behavioral and biological treatments to improve decision-making during the vulnerable adolescent period.
more »
« less
- Award ID(s):
- 2051105
- PAR ID:
- 10591733
- Publisher / Repository:
- Neurobiology of Learning and Memory
- Date Published:
- Journal Name:
- Neurobiology of Learning and Memory
- Volume:
- 217
- Issue:
- C
- ISSN:
- 1074-7427
- Page Range / eLocation ID:
- 108016
- Subject(s) / Keyword(s):
- Adolescence Early life adversity Maternal separation Punishment Risky decision-making Sex differences
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract When animals are sick, their physiology and behavior change in ways that can impact their offspring. Research is emerging showing that infection risk alone can also modify the physiology and behavior of healthy animals. If physiological responses to environments with high infection risk take place during reproduction, it is possible that they lead to maternal effects. Understanding whether and how high infection risk triggers maternal effects is important to elucidate how the impacts of infectious agents extend beyond infected individuals and how, in this way, they are even stronger evolutionary forces than already considered. Here, to evaluate the effects of infection risk on maternal responses, we exposed healthy female Japanese quail to either an immune-challenged (lipopolysaccharide [LPS] treated) mate or to a healthy (control) mate. We first assessed how females responded behaviorally to these treatments. Exposure to an immune-challenged or control male was immediately followed by exposure to a healthy male, to determine whether treatment affected paternity allocation. We predicted that females paired with immune-challenged males would avoid and show aggression towards those males, and that paternity would be skewed towards the healthy male. After mating, we collected eggs over a 5-day period. As an additional control, we collected eggs from immune-challenged females mated to healthy males. We tested eggs for fertilization status, embryo sex ratio, as well as albumen corticosterone, lysozyme activity, and ovotransferrin, and yolk antioxidant capacity. We predicted that immune-challenged females would show the strongest changes in the egg and embryo metrics, and that females exposed to immune-challenged males would show intermediate responses. Contrary to our predictions, we found no avoidance of immune-challenged males and no differences in terms of paternity allocation. Immune-challenged females laid fewer eggs, with an almost bimodal distribution of sex ratio for embryos. In this group, albumen ovotransferrin was the lowest, and yolk antioxidant capacity decreased over time, while it increased in the other treatments. No differences in albumen lysozyme were found. Both females that were immune-challenged and those exposed to immune-challenged males deposited progressively more corticosterone in their eggs over time, a pattern opposed to that shown by females exposed to control males. Our results suggest that egg-laying Japanese quail may be able to respond to infection risk, but that additional or prolonged sickness symptoms may be needed for more extensive maternal responses.more » « less
-
Experiencing some early life adversity can have an “inoculating” effect that promotes resilience in adulthood. However, the mechanisms underlying stress inoculation are unknown, and animal models are lacking. Here we used the limited bedding and nesting (LBN) model of adversity to evaluate stress inoculation of addiction-related phenotypes. In LBN, pups from postnatal days 2 to 9 and their dams were exposed to a low-resource environment. In adulthood, they were tested for addiction-like phenotypes and compared to rats raised in standard housing conditions. High levels of impulsivity are associated with substance abuse, but in males, LBN reduced impulsive choice compared to controls. LBN males also self-administered less morphine and had a lower breakpoint on a progressive ratio reinforcement schedule than controls. These effects of LBN on addiction-related behaviors were not found in females. Because the nucleus accumbens (NAc) mediates these behaviors, we tested whether LBN altered NAc physiology in drug-naïve and morphine-exposed rats. LBN reduced the frequency of spontaneous excitatory postsynaptic currents in males, but a similar effect was not observed in females. Only in males did LBN prevent a morphine-induced increase in the AMPA/NMDA ratio. RNA sequencing was performed to delineate the molecular signature in the NAc associated with LBN-derived phenotypes. LBN produced sex-specific changes in transcription, including in genes related to glutamate transmission. Collectively, these studies reveal that LBN causes a male-specific stress inoculation effect against addiction-related phenotypes. Identifying factors that promote resilience to addiction may reveal novel treatment options for patients.more » « less
-
The neuropeptide, arginine vasopressin (AVP), has been implicated in social communication across a diverse array of species. Many rodents communicate basic behavioral states with negative versus positive valence through high-pitched vocalizations above the human hearing range (ultrasonic vocalizations; USVs). Previous studies have found that Brattleboro (Bratt) rats, which have a mutation in the Avp gene, exhibit deficits in their USVs from the early postnatal period through adolescence, but the magnitude of this effect appears to decrease from the juvenile to adolescent phase. The present study tested whether Bratt rats continue to exhibit USV deficits in adulthood. USVs of adult male and female Bratt and wild type (WT) rats were recorded in two contexts: a novel environment (empty arena) and a social context (arena filled with bedding soiled by same-sex conspecifics). The number, frequency, and duration of 50 kHz USVs were quantified by DeepSqueak after validation with manual scoring. Twenty-two kHz measures were quantified by manual scoring because DeepSqueak failed to accurately detect USVs in this frequency range. Adult Bratt rats did not exhibit deficits in the number of 50 kHz USVs: male Bratt rats emitted similar 50 kHz USVs as male WT rats, whereas female Bratt rats emitted more USVs than female WT rats. USV frequency and duration were altered in adult Bratt rats, but in a context-dependent manner. Twenty-two kHz USVs were less affected by the Bratt mutation. The present study demonstrates how chronic AVP deficiency impacts social communication across the lifespan. The present findings reveal a complex role for AVP in vocal communication, whereby disruption to the Avp gene leads to sex-, context-, and developmental phase-specific effects on the quantity and spectrotemporal characteristics of rat USVs.more » « less
-
Uncertainty permeates decisions from the trivial to the profound. Integrating brain and behavioral evidence, we discuss how probabilistic (varied outcomes) and temporal (delayed outcomes) uncertainty differ across age and individuals; how critical tests adjudicate between theories of uncertainty (prospect theory and fuzzy-trace theory); and how these mechanisms might be represented in the brain. The same categorical gist representations of gains and losses account for choices and eye-tracking data in both value-allocation (add money to gambles) and risky-choice tasks, disconfrming prospect theory and confrming predictions of fuzzy-trace theory. The analysis is extended to delay discounting and disambiguated choices, explaining hidden zero effects that similarly turn on categorical distinctions between some gain and no gain, certain gain and uncertain gain, gain and loss, and now and later. Bold activation implicates dorsolateral prefrontal and posterior parietal cortices in gist strategies that are not just one tool in a grab-bag of cognitive options but rather are general strategies that systematically predict behaviors across many different tasks involving probabilistic and temporal uncertainty. High valuation (e.g., ventral striatum; ventromedial prefrontal cortex) and low executive control (e.g., lateral prefrontal cortex) contribute to risky and impatient choices, especially in youth. However, valuation in ventral striatum supports reward-maximizing and gist strategies in adulthood. Indeed, processing becomes less “rational” in the sense of maximizing gains and more noncompensatory (eye movements indicate fewer tradeoffs) as development progresses from adolescence to adulthood, as predicted. Implications for theoretically predicted “public-health paradoxes” are discussed, including gist versus verbatim thinking in drug experimentation and addiction.more » « less
An official website of the United States government

