In this paper, a density-driven multi-agent swarm control problem is investigated. Robot swarms can provide a great benefit, especially for applications where a single robot cannot effectively achieve a given task. For large spatial-scale applications such as search and rescue, environmental monitoring, and surveillance, a new multi-agent swarm control strategy is necessary because of physical constraints including a robot number and operation time. This paper provides a novel density-driven swarm control strategy for multi-agent systems based on the Optimal Transport theory, to cover a spacious domain with limited resources. In such a scenario, \textit{efficiency} will likely be a key point in achieving an efficient robot swarm behavior rather than uniform coverage that might be infeasible. With the given reference density, pre-constructed from available information, the proposed swarm control method will drive the multi-agent system such that their time-averaged behavior becomes similar to the reference density. In this way, density-driven swarm control will enable the multiple agents to spend most of their time on high-priority regions that are reflected in the reference density, leading to efficiency. To protect the agents from collisions, the Artificial Potential Field method is employed and combined with the proposed density-driven swarm control scheme. Simulations are conducted to validate density-driven swarm control as well as to test collision avoidance. Also, the swarm performance is analyzed by varying the agent number in the simulation.
more »
« less
Adaptive Multiple Distributed Bidirectional Spiral Path Planning for Foraging Robot Swarms
The Distributed Deterministic Spiral Algorithm (DDSA) has shown great foraging efficiency in robot swarms. However, when the number of robots in the swarm increases, scalability becomes a significant bottleneck due to increased collisions among robots, making it challenging to deploy them in the search space (e.g., 20 robots). To address this issue, we propose an adaptive Multiple-Distributed Bidirectional Spiral Algorithm (MDBSA) that enhances scalability. Our proposed algorithm partitions the squared search arena into multiple identical squared regions and assigns robots to regions dynamically based on the number of regions. In each region, a bidirectional spiral search path is planned, and when a robot completes its search, it is assigned to either an unassigned region or a region with one robot. The two robots will then travel along the path from the starting and ending points of the spiral path. We evaluated the performance of robot swarms using the MDBSA algorithm in the ARGoS robot simulator. Our experimental results show that the proposed MDBSA algorithm outperforms DDSA. When robots deliver collected resources to regions instead of the center, it reduces collisions and significantly improves the scalability of the robot swarm. Our findings suggest that a multiple-distributed search strategy is an efficient solution for foraging robot swarms.
more »
« less
- Award ID(s):
- 2112650
- PAR ID:
- 10591790
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-4139-3
- Page Range / eLocation ID:
- 225 to 232
- Subject(s) / Keyword(s):
- Path Planning, Task Partitioning, Distributed Spiral Search, Foraging Robot Swarms
- Format(s):
- Medium: X
- Location:
- Montreal, QC, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper investigates a class of motion planning problems where multiple unicycle robots desire to safely reach their respective goal regions with minimal traveling times. We present a distributed algorithm which integrates decoupled optimal feedback planning and distributed conflict resolution. Collision avoidance and finite-time arrival at the goal regions are formally guaranteed. Further, the computational complexity of the proposed algorithm is independent of the robot number. A set of simulations are conduct to verify the scalability and near-optimality of the proposed algorithm.more » « less
-
null (Ed.)Abstract Swarm robotic search aims at searching targets using a large number of collaborating simple mobile robots, with applications to search and rescue and hazard localization. In this regard, decentralized swarm systems are touted for their coverage scalability, time efficiency, and fault tolerance. To guide the behavior of such swarm systems, two broad classes of approaches are available, namely, nature-inspired swarm heuristics and multi-robotic search methods. However, the ability to simultaneously achieve efficient scalability and provide fundamental insights into the exhibited behavior (as opposed to exhibiting a black-box behavior) remains an open problem. To address this problem, this paper extends the underlying search approach in batch-Bayesian optimization to perform search with embodied swarm agents operating in a (simulated) physical 2D arena. Key contributions lie in (1) designing an acquisition function that not only balances exploration and exploitation across the swarm but also allows modeling knowledge extraction over trajectories and (2) developing its distributed implementation to allow asynchronous task inference and path planning by the swarm robots. The resulting collective informative path planning approach is tested on target-search case studies of varying complexity, where the target produces a spatially varying (measurable) signal. Notably, superior performance, in terms of mission completion efficiency, is observed compared to exhaustive search and random walk baselines as well as a swarm optimization-based state-of-the-art method. Favorable scalability characteristics are also demonstrated.more » « less
-
null (Ed.)Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions are needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each task requires a robot to reach a location and work for a specific amount of time. The proposed approach improves over two different baseline algorithms in specific settings with statistical significance, while showing consistently good results overall. Moreover, the proposed solution is robust to limited communication and robot failures.more » « less
-
Given a swarm of limited-capability robots, we seek to automatically discover the set of possible emergent behaviors. Prior approaches to behavior discovery rely on human feedback or hand-crafted behavior metrics to represent and evolve behaviors and only discover behaviors in simulation, without testing or considering the deployment of these new behaviors on real robot swarms. In this work, we present Real2Sim2Real Behavior Discovery via Self-Supervised Representation Learning, which combines representation learning and novelty search to discover possible emergent behaviors automatically in simulation and enable direct controller transfer to real robots. First, we evaluate our method in simulation and show that our proposed self-supervised representation learning approach outperforms previous hand-crafted metrics by more accurately representing the space of possible emergent behaviors. Then, we address the reality gap by incorporating recent work in sim2real transfer for swarms into our lightweight simulator design, enabling direct robot deployment of all behaviors discovered in simulation on an open-source and low-cost robot platform.more » « less
An official website of the United States government

