Abstract The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginningc. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (PycnaAmyot & Audinet‐Serville,YangaDistant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genusPlatypleurais recovered as polyphyletic, withPlatypleura signiferaWalker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a newPlatypleuraconcept is proposed with the synonymization ofAzanicadaVilletsyn.n.The generaOrapaDistant andHamzaDistant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapinisyn.n. is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability. 
                        more » 
                        « less   
                    
                            
                            Evolutionary history, novel lineages and symbiont coevolution in the ant tribe Camponotini (Hymenoptera: Formicidae)
                        
                    
    
            Abstract Many insect groups have acquired obligate microbial symbionts, and the resulting associations can have important ecological and evolutionary consequences. A notable example among ants is the species‐rich tribe Camponotini, whose members derive nutritional benefits from a vertically inherited bacterial endosymbiont,Blochmannia. We generate ultraconserved element (UCE) phylogenomic data for 220 ingroup and 5 outgroup taxa to reconstruct a detailed evolutionary history of the Camponotini, including the inference of divergence times and dispersal events. Under multiple modes of analysis, including both concatenation and species‐tree approaches, we recover a well‐supported backbone phylogeny comprising eight lineages: three large genera (Camponotus,Colobopsis,Polyrhachis) and several smaller genera or clusters of genera. Three novel lineages are uncovered that cannot be placed in any existing genus:Lathidrisgen. n., from the mountains of Mesoamerica;Retalimyrmagen. n., from the Indian Himalayas; andUwarigen. n., from eastern Asia. The species in these new genera were described and placed erroneously inCamponotus. The tribe Camponotini is estimated to have a crown origin in the Eocene (median age 38.4 Ma), with successively younger crown ages forColobopsis(22.5 Ma),Camponotus(18.6 Ma) andPolyrhachis(18.5 Ma). We infer an Australasian or Indomalayan origin for the tribe, with multiple dispersal events to the Afrotropics, Palearctic region, and New World. Phylogenetic analysis of selectedBlochmanniagenes from a subset of 97 camponotine taxa yields results that are largely congruent with the ant host phylogeny, at least for well‐supported nodes, but we find evidence thatBlochmanniafrom some old lineages—especiallyLathidris—may have discordant histories, suggesting possible lability of this symbiosis in the early evolution of camponotine ants. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1856400
- PAR ID:
- 10591936
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Systematic Entomology
- Volume:
- 50
- Issue:
- 3
- ISSN:
- 0307-6970
- Format(s):
- Medium: X Size: p. 646-676
- Size(s):
- p. 646-676
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Camponotus and Colobopsis are widely distributed and species-rich genera in the ant tribe Camponotini. Molecular phylogenetic studies demonstrate that they are not sister taxa, but several lineages within each genus have converged to a remarkable degree, confounding the taxonomy of these ants. Based on multiple lines of evidence, including worker and male morphology, we demonstrate that: (1) three species of “Camponotus” belonging to the subgenus Myrmotemnus, including its type species, are in fact members of the genus Colobopsis ; (2) four species previously assigned to Colobopsis belong to the subgenus Myrmamblys of Camponotus ; and (3) three Nearctic taxa recently placed in Colobopsis are members of the genus Camponotus and closely related to Camponotus clarithorax . These taxonomic findings yield the following new or revived combinations: Colobopsis moeschi ( comb. nov. ), Colobopsis moeschi lygaea ( comb. nov. ), Colobopsis nutans ( comb. nov. ), Colobopsis nutans cleliae ( comb. nov. ), and Colobopsis reichenspergeri ( comb. nov. ); Camponotus apostemata ( comb. nov. ), Camponotus aurelianus ( comb. rev. ), Camponotus cavibregma ( comb. nov. ), Camponotus horrens ( comb. rev. ), Camponotus politae ( comb. rev. ), Camponotus trajanus ( comb. rev. ), and Camponotus yogi ( comb. rev. ). A further consequence is the following generic synonymy (senior synonym listed first): Colobopsis = Myrmotemnus syn. nov. , and Camponotus = Dolophra syn. rev. At the species level, we argue that Camponotus apostemata and Camponotus cavibregma are junior synonyms ( syn. nov. ) of Camponotus yogi , and Camponotus quercicola is a junior synonym ( syn. nov. ) of Ca. laevigatus . Taxonomic comments are also provided on some members of the Camponotus reticulatus group, with Camponotus adustus ( stat. nov. ) and Ca. leucodiscus ( stat. rev. ) being recognized as distinct species rather than subspecies of Ca. bellus . A male-based diagnosis of the Camponotini is provided, and differences between the males of Colobopsis and Camponotus are documented and illustrated for the first time. This study reveals new character systems of potential value to the systematics of these ants, including features of the male genitalia, and emphasizes the value of reciprocal illumination between phylogenomics and critical morphological analysis.more » « less
- 
            Abstract Evolutionary and ecological hypotheses of the freshwater mussel subfamily Ambleminae are intensely geographically biased—a consequence of the complete exclusion of Mesoamerican taxa in phylogenetic reconstructions of the clade. We set out to integrate a portion of the Mesoamerican freshwater mussel assemblage into existing hypotheses of amblemine classification and evolution by generating a molecular phylogeny that includes four previously unsampled Mesoamerican genera and nine species endemic to that region. Given the traditionally hypothesized affinity to Nearctic mussels and the understanding that classification should reflect common ancestry, we predicted that (a) Mesoamerican genera would be recovered as members of the recognized tribes of the Ambleminae, and (b) genera would be supported as monophyletic. The mutilocus phylogeny (COI + 28S + 16S) reported herein does not fully support either of those hypotheses. NeitherCyrtonaiasnorPsorulawere supported as monophyletic and we predict several other Mesoamerica genera are also non‐monophyletic. The reconstructed phylogeny recovered four independent lineages of Mesoamerican freshwater mussels and these clades are distributed across the phylogeny of the Ambleminae, including the tribe Quadrulini (Megalonaias), Lampsilini (two lineages:Cyrtonaias explicata/Sphenonaias microdon, andPachynaias), and a previously unrecognized, exclusively Mesoamerican and Rio Grande clade consisting of the generaPsoronaias,PsorulaandPopenaias. The latter clade possesses several morphological characteristics that distinguish it from its sister taxon, tribe Lampsilini, and we recognize this newly identified Mesoamerican clade as a fifth tribe of the Ambleminae attributable to the Popenaiadini Heard & Guckert, 1970. This revised classification more completely recognizes the suprageneric diversity of the Ambleminae.more » « less
- 
            Abstract Nylanderia(Emery) is one of the world's most diverse ant genera, with 123 described species worldwide and hundreds more undescribed. Fifteen globetrotting or invasive species have widespread distributions and are often encountered outside their native ranges. A molecular approach to understanding the evolutionary history and to revision ofNylanderiataxonomy is needed because historical efforts based on morphology have proven insufficient to define major lineages and delimit species boundaries, especially where adventive species are concerned. To address these problems, we generated the first genus‐wide genomic dataset ofNylanderiausing ultraconserved elements (UCEs) to resolve the phylogeny of major lineages, determine the age and origin of the genus, and describe global biogeographical patterns. Sampling from seven biogeographical regions revealed a Southeast Asian origin ofNylanderiain the mid‐Eocene and four distinct biogeographical clades in the Nearctic, the Neotropics, the Afrotropics/Malagasy region, and Australasia. The Nearctic and Neotropical clades are distantly related, indicating two separate dispersal events to the Americas between the late Oligocene and early Miocene. We also addressed the problem of misidentification that has characterized species‐level taxonomy inNylanderiaas a result of limited morphological variation in the worker caste by evaluating the integrity of species boundaries in six of the most widespreadNylanderiaspecies. We sampled across ranges of species in theN. bourbonicacomplex (N. bourbonica(Forel) + N. vaga(Forel)), theN. fulvacomplex (N. fulva(Mayr) + N. pubens(Forel)), and theN. guatemalensiscomplex (N. guatemalensis(Forel) + N. steinheili(Forel)) to clarify their phylogenetic placement. Deep splits within these complexes suggest that some species names – specificallyN. bourbonicaandN. guatemalensis– each are applied to multiple cryptic species. In exhaustively samplingNylanderiadiversity in the West Indies, a ‘hot spot’ for invasive taxa, we found five adventive species among 22 in the region; many remain morphologically indistinguishable from one another, despite being distantly related. We stress that overcoming the taxonomic impediment through the use of molecular phylogeny and revisionary study is essential for conservation and invasive species management.more » « less
- 
            Marvaldi, Adriana (Ed.)Abstract Sepidiini is a speciose tribe of desert-inhabiting darkling beetles, which contains a number of poorly defined taxonomic groups and is in need of revision at all taxonomic levels. In this study, two previously unrecognized lineages were discovered, based on morphological traits, among the extremely speciose genera Psammodes Kirby, 1819 (164 species and subspecies) and Ocnodes Fåhraeus, 1870 (144 species and subspecies), namely the Psammodes spinosus species-group and Ocnodes humeralis species-group. In order to test their phylogenetic placement, a phylogeny of the tribe was reconstructed based on analyses of DNA sequences from six nonoverlapping genetic loci (CAD, wg, COI JP, COI BC, COII, and 28S) using Bayesian and maximum likelihood inference methods. The aforementioned, morphologically defined, species-groups were recovered as distinct and well-supported lineages within Molurina + Phanerotomeina and are interpreted as independent genera, respectively, Tibiocnodes Gearner & Kamiński gen. nov. and Tuberocnodes Gearner & Kamiński gen. nov. A new species, Tuberocnodes synhimboides Gearner & Kamiński sp. nov., is also described. Furthermore, as the recovered phylogenetic placement of Tibiocnodes and Tuberocnodes undermines the monophyly of Molurina and Phanerotomeina, an analysis of the available diagnostic characters for those subtribes is also performed. As a consequence, Phanerotomeina is considered as a synonym of the newly redefined Molurina sens. nov. Finally, spectrograms of vibrations produced by substrate tapping of two Molurina species, Toktokkus vialis (Burchell, 1822) and T. synhimboides, are presented.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
