skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 20, 2026

Title: A novel, self‐contained benthic chamber design for conducting freshwater ecosystem experiments
Abstract We present a newly developed design for a self‐contained benthic chamber for conducting in situ ecosystem experiments in streams, with a focus on biogeochemical processes such as ecosystem metabolism and nutrient cycling. Our design expands upon smaller, portable chamber designs and is meant to answer questions at larger scales. These new chambers allow for a high level of experimental control in the field and can be used to generate spatially explicit data regarding ecosystem processes and to test mechanistic hypotheses. They are built to be deployed within the stream over periods of weeks to months and to withstand natural hydraulic forces of the benthic zone. First, we describe the materials and steps that are needed to construct these chambers in detail. Then, we report the methods and results of a multi‐part, diagnostic field study meant to demonstrate the performance and utility of the design. We quantified solute dynamics using a conservative tracer injection, then we estimated ecosystem metabolism across the study site and performed nutrient additions. We detected asymptotic declines in tracer concentrations, calculated nutrient removal rates, and mapped hotspots of ecosystem metabolism. Flow velocity and water depth imposed limitations, but with appropriate methodological forethought these limitations can be minimized. The capacity of our design to accommodate complex, three‐dimensional habitats and macrofauna, along with the capability to generate spatially explicit data, are the main advances we present. These advances provide a novel method whereby motivated users can connect mechanistic hypothesis testing with natural ecological processes through ecosystem‐level field experiments.  more » « less
Award ID(s):
2305574
PAR ID:
10592000
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
23
Issue:
7
ISSN:
1541-5856
Format(s):
Medium: X Size: p. 451-466
Size(s):
p. 451-466
Sponsoring Org:
National Science Foundation
More Like this
  1. River ecosystems are highly biodiverse, influence global biogeochemical cycles, and provide valued services. However, humans are increasingly degrading fluvial ecosystems by altering their streamflows. Effective river restoration requires advancing our mechanistic understanding of how flow regimes affect biota and ecosystem processes. Here, we review emerging advances in hydroecology relevant to this goal. Spatiotemporal variation in flow exerts direct and indirect control on the composition, structure, and dynamics of communities at local to regional scales. Streamflows also influence ecosystem processes, such as nutrient uptake and transformation, organic matter processing, and ecosystem metabolism. We are deepening our understanding of how biological processes, not just static patterns, affect and are affected by stream ecosystem processes. However, research on this nexus of flow-biota-ecosystem processes is at an early stage. We illustrate this frontier with evidence from highly altered regulated rivers and urban streams. We also identify research challenges that should be prioritized to advance process-based river restoration. 
    more » « less
  2. Submarine groundwater discharge (SGD) in high volcanic islands can be an important source of freshwater and nutrients to coral reefs. High inorganic nutrient content is generally thought to augment primary production in coastal systems but when this is delivered via a freshwater vector as is the case with SGD in this study, the effects on productivity are unclear. In the current literature, there is limited evidence for a direct association between SGD and primary productivity of reefs. To elucidate the response of primary productivity to SGD, we conducted spatially and temporally explicit in situ benthic chamber experiments on a reef flat along a gradient of SGD. We found significant quadratic relationships between C-uptake and SGD for both phytoplankton and the most abundant macroalga, Gracilaria salicornia , with uptake maxima at SGD-derived salinities of ~21−22 (24.5−26.6 μmol NO 3 -L −1 ). These results suggest a physiological tradeoff between salinity tolerance and nutrient availability for reef primary producers. Spatially explicit modeling of reefs with SGD and without SGD indicate reef-scale G. salicornia and phytoplankton C-uptake decreased by 82% and 36% in the absence of SGD, respectively. Thus, nutrient-rich and low salinity SGD has significant effects on algal C-uptake in reef systems. 
    more » « less
  3. This data set includes data and scripts from a field study examining the effect of diel oxygen cycling on faunal activity, and in turn sediment oxygen demand. The field experiment used in situ flow-through benthic chambers to measure oxygen consumption, as described in the methods paper Gadeken et al 2023 in L&O:Methods. The chambers were deployed and retrieved in three ~24 hour deployments in a shallow subtidal area of Bon Secour Bay in Mobile Bay, AL, in August 2021. Included in this data set are the raw data files of oxygen and temperature measurements from Onset HOBO DO loggers integrated into the benthic chamber system, annotated MATLAB scripts and workspaces detailing data processing and analysis, and faunal community data from the benthic chambers. 
    more » « less
  4. Vegetation processes are fundamentally limited by nutrient and water availability, the uptake of which is mediated by plant roots in terrestrial ecosystems. While tropical forests play a central role in global water, carbon, and nutrient cycling, we know very little about tradeoffs and synergies in root traits that respond to resource scarcity. Tropical trees face a unique set of resource limitations, with rock-derived nutrients and moisture seasonality governing many ecosystem functions, and nutrient versus water availability often separated spatially and temporally. Root traits that characterize biomass, depth distributions, production and phenology, morphology, physiology, chemistry, and symbiotic relationships can be predictive of plants’ capacities to access and acquire nutrients and water, with links to aboveground processes like transpiration, wood productivity, and leaf phenology. In this review, we identify an emerging trend in the literature that tropical fine root biomass and production in surface soils are greatest in infertile or sufficiently moist soils. We also identify interesting paradoxes in tropical forest root responses to changing resources that merit further exploration. For example, specific root length, which typically increases under resource scarcity to expand the volume of soil explored, instead can increase with greater base cation availability, both across natural tropical forest gradients and in fertilization experiments. Also, nutrient additions, rather than reducing mycorrhizal colonization of fine roots as might be expected, increased colonization rates under scenarios of water scarcity in some forests. Efforts to include fine root traits and functions in vegetation models have grown more sophisticated over time, yet there is a disconnect between the emphasis in models characterizing nutrient and water uptake rates and carbon costs versus the emphasis in field experiments on measuring root biomass, production, and morphology in response to changes in resource availability. Closer integration of field and modeling efforts could connect mechanistic investigation of fine-root dynamics to ecosystem-scale understanding of nutrient and water cycling, allowing us to better predict tropical forest-climate feedbacks. 
    more » « less
  5. This dataset is part of a field study examining the effect of diel oxygen cycling on faunal activity, and in turn sediment oxygen demand. The field experiment used in situ flow-through benthic chambers to measure oxygen consumption, as described in the methods paper Gadeken et al 2023. The chambers were deployed and retrieved in three ~24 hour deployments in a shallow subtidal area of Bon Secour Bay in Mobile Bay, AL, in August 2021. This dataset contains streamlined data from the HOBO dissolved oxygen (DO) loggers and the log time of when the chamber system flushes the overlying water in the chamber and starts a new incubation. 
    more » « less