skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temporal evolution of the light emitted by a thin, laser-ionized plasma source
We present an experimental and simulation-based investigation of the temporal evolution of light emission from a thin, laser-ionized helium plasma source. We demonstrate an analytic model to calculate the approximate scaling of the time-integrated, on-axis light emission with the initial plasma density and temperature, supported by the experiment, which enhances the understanding of plasma light measurement for plasma wakefield accelerator (PWFA) plasma sources. Our model simulates the plasma density and temperature using a split-step Fourier code and a particle-in-cell code. A fluid simulation is then used to model the plasma and neutral density, and the electron temperature as a function of time and position. We then show the numerical results of the space-and-time-resolved light emission and that collisional excitation is the dominant source of light emission. We validate our model by measuring the light emitted by a laser-ionized plasma using a novel statistical method capable of resolving the nanosecond-scale temporal dynamics of the plasma light using a cost-effective camera with microsecond-scale timing jitter. This method is ideal for deployment in the high radiation environment of a particle accelerator that precludes the use of expensive nanosecond-gated cameras. Our results show that our models can effectively simulate the dynamics of a thin, laser-ionized plasma source. In addition, this work provides a detailed understanding of the plasma light measurement, which is one of the few diagnostic signals available for the direct measurement of PWFA plasma sources.  more » « less
Award ID(s):
2047083
PAR ID:
10592003
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
31
Issue:
1
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pilat, Fulvia; Fischer, Wolfram; Saethre, Robert; Anisimov, Petr; Andrian, Ivan (Ed.)
    A large challenge with Plasma Wakefield Acceleration lies in creating a plasma with a profile and length that properly match the electron beam. Using a laser-ionized plasma source provides control in creating an appropriate plasma density ramp. Additionally, using a laser-ionized plasma allows for an accelerator to run at a higher repetition rate. At the Facility for Advanced Accelerator Experimental Tests, at SLAC National Accelerator Laboratory, we ionize hydrogen gas with a 225 mJ, 50 fs, 800 nm laser pulse that passes through an axicon lens, imparting a conical phase on the pulse that produces a focal spot with an intensity distribution described radially by a Bessel function. This paper overviews the diagnostic tests used to characterize and optimize the focal spot along the meter-long focus. In particular, we observe how wavefront aberrations in the laser pulse impact the peak intensity of the focal spot. Furthermore, we discuss the impact of nonlinear effects caused by a 6 mm, CaF2 vacuum window in the laser beam line. 
    more » « less
  2. Optical Thomson scattering is now a mature diagnostic tool for precisely measuring local plasma density and temperature. These measurements typically take advantage of a simplified analytical model of the scattered spectrum, which is built upon the assumption that each plasma species is in thermal equilibrium. However, this assumption fails for most laboratory plasmas of interest, which are often produced through high field ionization of atoms via ultrashort laser pulses and vulnerable to several kinetic instabilities. While it is possible to analytically model the Thomson scattered spectrum for some non-Maxwellian distribution functions, it is often not practical to do so for laboratory plasmas with highly complex and unstable distribution functions. We present a new method for predicting the Thomson scattered spectrum from any plasma directly from fully kinetic particle-in-cell simulations. This approach allows us to model the contributions of kinetic instabilities to the Thomson spectrum that aren’t taken into account in Maxwellian theory. We demonstrate this method’s capability to capture nonthermal features in the Thomson spectrum by simulating a simple bumpon- tail plasma as well as a more complex laser-ionized plasma. The versatility of this approach makes it an effective aid in the experimental design of Thomson diagnostics to directly characterize kinetic instabilities in laboratory plasmas. Index Terms—plasma measurement, low-temperature plasmas, plasma diagnostics, plasma simulation, plasma stability, plasma density, plasma temperature 
    more » « less
  3. Hard x-rays produced by intense laser-produced fast electrons interacting with solids are a vital source for producing radiographs of high-density objects and implosion cores for inertial confinement fusion. Accurate calculation of hard x-ray sources requires a three-dimensional (3D) simulation geometry that fully models the electron transport dynamics, including electron recirculation and the generation of absolute photon yields. To date, 3D simulations of laser-produced bremsstrahlung photons over tens of picoseconds and code benchmarking have not been performed definitively. In this study, we characterize sub-picosecond laser-produced fast electrons by modeling angularly resolved bremsstrahlung measurements for refluxing and non-refluxing targets using the 3D hybrid particle-in-cell (PIC), Large Scale Plasma code. Bremsstrahlung radiation and escaped electron data were obtained by focusing a 50-TW Leopard laser (15 J, 0.35 ps, 2 × 1019 W/cm2) on a 100-μm-thick Cu foil and a Cu with a large plastic backing (Cu–CH target). Data for both the Cu and Cu–CH targets were reproduced for simulations with a given set of electron parameters. Comparison of the simulations revealed that the hard x-ray emission from the Cu target was significantly longer in duration than that from the Cu–CH target. The benchmarked hybrid PIC code could prove to be a powerful tool in the design and optimization of time- and angular-dependent bremsstrahlung sources for flash x-ray and gamma-ray radiography. 
    more » « less
  4. A direct measurement of the particle balance and derivation of the underlying particle source rate distribution in a helicon plasma developed for wakefield particle accelerators is presented. Parallel and radial ion fluxes are measured using laser induced fluorescence on single ionized argon. We find that the radial contribution to the source rate is an order of magnitude larger than the axial contribution. We also find that the axial source rate profile closely matches the radial density gradient axial profile, thus indicating the importance of the radial density profile for the particle balance. Notably, the peak ion source rate is located off-axis, about halfway between the axis and the vacuum wall on both sides of the axial center. 
    more » « less
  5. Sub-optical-cycle dynamics of dense electron bunches in relativistic-intensity laser–solid interactions lead to the emission of high-order harmonics and attosecond light pulses. The capacity of particle-in-cell simulations to accurately model these dynamics is essential for the prediction of emission properties because the attosecond pulse intensity depends on the electron density distribution at the time of emission and on the temporal distribution of individual electron Lorentz-factors in an emitting electron bunch. Here, we show that in one-dimensional collisionless simulations, the peak density of the emitting electron bunch increases with the increase in the spatial resolution of the simulation grid. When collisions are added to the model, the peak electron density becomes independent of the spatial resolution. Collisions are shown to increase the spread of the peaks of Lorentz-factors of emitting electrons in time, especially in the regimes far from optimum generation conditions, thus leading to lower intensities of attosecond pulses as compared to those obtained in collisionless simulations. 
    more » « less