skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing Human–Automated Vehicle Interactions: An Investigation into Car-Following Behavior
Automated vehicles are expected to influence human drivers’ behavior. Accordingly, capturing such changes is critical for planning and operation purposes. With regard to car-following behavior, a key question is whether existing car-following models can replicate these changes in human behavior. Using a data set that was collected from the car-following behavior of human drivers when following automated vehicles, this paper offers a robust methodology based on the concept of dynamic time warping to investigate the critical parameters that can be used to capture changes in human behavior. The results indicate that spacing can best substantiate such changes. Moreover, calibration and validation of the intelligent driver model (IDM) suggest its inability to capture changes in human behavior in response to automated vehicles. Thus, an extension of the IDM that explicitly models stochasticity in the behavior of individual drivers is applied, and the results show such a model can identify a reduction in uncertainty when following an automated vehicle. This finding also has implications for a stochastic extension to other models when analyzing and simulating a mixed-autonomy traffic flow environment.  more » « less
Award ID(s):
2047937
PAR ID:
10592017
Author(s) / Creator(s):
;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Volume:
2678
Issue:
5
ISSN:
0361-1981
Page Range / eLocation ID:
812 to 826
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Intelligent Driver Model (IDM) is one of the widely used car-following models to represent human drivers in mixed traffic simulations. However, the standard IDM performs too well in energy efficiency and comfort (acceleration) compared with real-world human drivers. In addition, many studies assessed the performance of automated vehicles interacting with human-driven vehicles (HVs) in mixed traffic where IDM serves as HVs based on the assumption that the IDM represents an intelligent human driver that performs not better than automated vehicles (AVs). When a commercially available control system of AVs, Adaptive Cruise Control (ACC), is compared with the standard IDM, it is found that the standard IDM generally outperforms ACC in fuel efficiency and comfort, which is not logical in an evaluation of any advanced control logic with mixed traffic. To ensure the IDM reasonably mimics human drivers, a dynamic safe time headway concept is proposed and evaluated. A real-world NGSIM data set is utilized as the human drivers for simulation-based comparisons. The results indicate that the performance of the IDM with dynamic time headway is much closer to human drivers and worse than the ACC system as expected. 
    more » « less
  2. Car-following (CF) behavior is a fundamental of traffic flow modeling; it can be used for the virtual testing of connected and automated vehicles and the simulation of various types of traffic flow, such as free flow and traffic oscillation. Although existing CF models can replicate the free flow well, they are incapable of simulating complicated traffic oscillation, and it is difficult to strike a balance between accuracy and efficiency. This article investigates the error variation when the traffic oscillation is simulated by the intelligent driver model (IDM). Then, it divides the traffic oscillation into four phases (coasting, deceleration, acceleration, and stationary) by using the space headway of multiple steps. To simulate traffic oscillation between multiple human-driven vehicles, a dynamic transformation CF model is proposed, which includes the long-time prediction submodel [modified sequence-to-sequence (Seq2seq)] model, short-time prediction submodel (Transformer), and their dynamic transformation strategy]. The first submodel is utilized to simulate the coasting and stationary phases, while the second submodel is utilized to simulate the acceleration and deceleration phases. The results of experiments indicated that compared to K -nearest neighbors, IDM, and Seq2seq CF models, the dynamic transformation CF model reduces the trajectory error by 60.79–66.69% in microscopic traffic flow simulations, 7.71–29.91% in mesoscopic traffic flow simulations, and 1.59–18.26% in macroscopic traffic flow simulations. Moreover, the runtime of the dynamic transformation CF model (Inference) decreased by 14.43–66.17% when simulating the large-scale traffic flow. 
    more » « less
  3. Driving in foggy conditions poses high risks to road users due to the reduction of visibility, affecting the drivers’ vision and perception, and making changes in driving behavior, which is one of the most important factors affecting vehicular emissions and fuel consumption. This study analyzes the PTV VISSIM traffic microsimulation outputs for exhaust emissions and fuel consumption of vehicles simulated under adverse weather conditions. This weather-dependent simulation is developed by using the advanced psychophysical car-following model “Wiedemann’s 99,” to flexibly control the driving behavior parameters in various driving conditions. Results show that vehicles under foggy conditions consume more fuel and produce more emissions in comparison with clear sky conditions and other scenarios. With the transition of current cities to smart sustainable cities and by introducing automated vehicles (AVs) to the traditional traffic network and gradually increasing their penetration rate, negative environmental impacts of driving under foggy conditions will be reduced, and improvement in overall mobility of a shared network of autonomous and human-driven is observable. 
    more » « less
  4. This paper presents a behavioral car following model, named the chained asymmetric behavior model, that improves on the asymmetric behavior model. This model is inspired by the empirical observation that vehicles react proportionately to the magnitude of disturbance experienced when traversing through a stop-and-go oscillation, deviating from a constant following behavior observed in equilibrium conditions. Findings from simulation experiments suggest that this “second-order” effect significantly affects traffic throughput and evolution under disturbances. Knowledge obtained from the model is leveraged toward designing control for connected automated vehicles in mixed traffic streams. 
    more » « less
  5. In the urban corridor with a mixed traffic composition of connected and automated vehicles (CAVs) alongside human-driven vehicles (HDVs), vehicle operations are intricately influenced by both individual driving behaviors and the presence of signalized intersections. Therefore, the development of a coordinated control strategy that effectively accommodates these dual factors becomes imperative to enhance the overall quality of traffic flow. This study proposes a bi-level structure crafted to decouple the joint effects of the vehicular driving behaviors and corridor signal offsets setting. The objective of this structure is to optimize both the average travel time (ATT) and fuel consumption (AFC). At the lower-level, three types of car-following models while considering driving modes are presented to illustrate the desired driving behaviors of HDVs and CAVs. Moreover, a trigonometry function method combined with a rolling horizon scheme is proposed to generate the eco-trajectory of CAVs in the mixed traffic flow. At the upper-level, a multi-objective optimization model for corridor signal offsets is formulated to minimize ATT and AFC based on the lower-level simulation outputs. Additionally, a revised Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is adopted to identify the set of Pareto-optimal solutions for corridor signal offsets under different CAV penetration rates (CAV PRs). Numerical experiments are conducted within a corridor that encompasses three signalized intersections. The performance of our proposed eco-driving strategy is validated in comparison to the intelligent driver model (IDM) and green light optimal speed advisory (GLOSA) algorithm in single-vehicle simulation. Results show that our proposed strategy yields reduced travel time and fuel consumption to both IDM and GLOSA. Subsequently, the effectiveness of our proposed coordinated control strategy is validated across various CAV PRs. Results indicated that the optimal AFC can be reduced by 4.1%–32.2% with CAV PRs varying from 0.2 to 1, and the optimal ATT can be saved by 2.3% maximum. Furthermore, sensitivity analysis is conducted to evaluate the impact of CAV PRs and V/C ratios on the optimal ATT and AFC. 
    more » « less