The Intelligent Driver Model (IDM) is one of the widely used car-following models to represent human drivers in mixed traffic simulations. However, the standard IDM performs too well in energy efficiency and comfort (acceleration) compared with real-world human drivers. In addition, many studies assessed the performance of automated vehicles interacting with human-driven vehicles (HVs) in mixed traffic where IDM serves as HVs based on the assumption that the IDM represents an intelligent human driver that performs not better than automated vehicles (AVs). When a commercially available control system of AVs, Adaptive Cruise Control (ACC), is compared with the standard IDM, it is found that the standard IDM generally outperforms ACC in fuel efficiency and comfort, which is not logical in an evaluation of any advanced control logic with mixed traffic. To ensure the IDM reasonably mimics human drivers, a dynamic safe time headway concept is proposed and evaluated. A real-world NGSIM data set is utilized as the human drivers for simulation-based comparisons. The results indicate that the performance of the IDM with dynamic time headway is much closer to human drivers and worse than the ACC system as expected. 
                        more » 
                        « less   
                    
                            
                            A Dynamic Transformation Car-Following Model for the Prediction of the Traffic Flow Oscillation
                        
                    
    
            Car-following (CF) behavior is a fundamental of traffic flow modeling; it can be used for the virtual testing of connected and automated vehicles and the simulation of various types of traffic flow, such as free flow and traffic oscillation. Although existing CF models can replicate the free flow well, they are incapable of simulating complicated traffic oscillation, and it is difficult to strike a balance between accuracy and efficiency. This article investigates the error variation when the traffic oscillation is simulated by the intelligent driver model (IDM). Then, it divides the traffic oscillation into four phases (coasting, deceleration, acceleration, and stationary) by using the space headway of multiple steps. To simulate traffic oscillation between multiple human-driven vehicles, a dynamic transformation CF model is proposed, which includes the long-time prediction submodel [modified sequence-to-sequence (Seq2seq)] model, short-time prediction submodel (Transformer), and their dynamic transformation strategy]. The first submodel is utilized to simulate the coasting and stationary phases, while the second submodel is utilized to simulate the acceleration and deceleration phases. The results of experiments indicated that compared to K -nearest neighbors, IDM, and Seq2seq CF models, the dynamic transformation CF model reduces the trajectory error by 60.79–66.69% in microscopic traffic flow simulations, 7.71–29.91% in mesoscopic traffic flow simulations, and 1.59–18.26% in macroscopic traffic flow simulations. Moreover, the runtime of the dynamic transformation CF model (Inference) decreased by 14.43–66.17% when simulating the large-scale traffic flow. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2152258
- PAR ID:
- 10510984
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Intelligent Transportation Systems Magazine
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1939-1390
- Page Range / eLocation ID:
- 174 to 198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Automated vehicles are expected to influence human drivers’ behavior. Accordingly, capturing such changes is critical for planning and operation purposes. With regard to car-following behavior, a key question is whether existing car-following models can replicate these changes in human behavior. Using a data set that was collected from the car-following behavior of human drivers when following automated vehicles, this paper offers a robust methodology based on the concept of dynamic time warping to investigate the critical parameters that can be used to capture changes in human behavior. The results indicate that spacing can best substantiate such changes. Moreover, calibration and validation of the intelligent driver model (IDM) suggest its inability to capture changes in human behavior in response to automated vehicles. Thus, an extension of the IDM that explicitly models stochasticity in the behavior of individual drivers is applied, and the results show such a model can identify a reduction in uncertainty when following an automated vehicle. This finding also has implications for a stochastic extension to other models when analyzing and simulating a mixed-autonomy traffic flow environment.more » « less
- 
            The traffic fundamental diagram (FD) describes the relationships among fundamental traffic variables of flow, density, and speed. FD represents fundamental properties of traffic streams, giving insights into traffic performance. This paper presents a theoretical investigation of dynamic FD properties, derived directly from vehicle car-following (control) models to model traffic hysteresis. Analytical derivation of dynamic FD is enabled by (i) frequency-domain representation of vehicle kinematics (acceleration, speed, and position) to derive vehicle trajectories based on transfer function and (ii) continuum approximation of density and flow, measured along the derived trajectories using Edie’s generalized definitions. The formulation is generic: the derivation of dynamic FD is possible with any analytical car-following (control) laws for human-driven vehicles or automated vehicles (AVs). Numerical experiments shed light on the effects of the density-flow measurement region and car-following parameters on the dynamic FD properties for an AV platoon.more » « less
- 
            The ability to model and predict ego-vehicle's surrounding traffic is crucial for autonomous pilots and intelligent driver-assistance systems. Acceleration prediction is important as one of the major components of traffic prediction. This paper proposes novel approaches to the acceleration prediction problem. By representing spatial relationships between vehicles with a graph model, we build a generalized acceleration prediction framework. This paper studies the effectiveness of proposed Graph Convolution Networks, which operate on graphs predicting the acceleration distribution for vehicles driving on highways. We further investigate prediction improvement through integrating of Recurrent Neural Networks to disentangle the temporal complexity inherent in the traffic data. Results from simulation with comprehensive performance metrics support that our proposed networks outperform state-of-the-art methods in generating realistic trajectories over a prediction horizon.more » « less
- 
            Accurate prediction of traffic flow dynamics is a key step towards effective congestion mitigation strategies. The dynamic nature of traffic flow and lack of comprehensive data coverage (e.g., availability of data at loop detector locations), however, have historically prevented accurate traffic state prediction, leading to the widespread utilization of reactive congestion mitigation strategies. The introduction of connected automated vehicles provides an opportunity to address this challenge. These vehicles rely on trajectory-level prediction of their surrounding traffic environment to plan a safe and efficient path. This study proposes a methodology to utilize the outcome of such predictions to estimate the future traffic state. Moreover, the same approach can be applied to data from connected vehicles for traffic state prediction. Since in many driving scenarios, more than one maneuver is feasible, it is more logical to predict the location of the vehicles in a probabilistic manner based on the probability of different maneuvers. The key contribution of this study is to introduce a methodology to convert such probabilistic trajectory predictions to aggregate traffic state predictions (i.e., flow, space–mean speed, and density). The key advantage of this approach (over directly predicting traffic state based on aggregated traffic data) is its ability to capture the interactions among vehicles to increase the accuracy of the prediction. The down side of this approach, on the other hand, is that any increase in the prediction horizon reduces the accuracy of prediction (due to the uncertainty in the vehicles’ interactions and the increase in the possibility of different maneuvers). At the microscopic level, this study proposes a probability based version of the time–space diagram, and at the macroscopic level, this study proposes probabilistic estimates of flow, density, and space–mean speed using the trajectory-level predictions. To evaluate the effectiveness of the proposed approach in predicting traffic state, the mean absolute percentage error for each probabilistic macroscopic estimate is evaluated on multiple subsamples of the NGSIM US-101 and I-80 data sets. Moreover, while introducing this novel traffic state prediction approach, this study shows that the fundamental relation among the average traffic flow, density, and space–mean speed is still valid under the probabilistic formulations of this study.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    