skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Reinforcement Learning Approach for Automated Vehicle Mandatory Lane Changing
This paper proposes a reinforcement learning-based framework for mandatory lane changing of automated vehicles in a non-cooperative environment. The objective is to create a reinforcement learning (RL) agent that is able to perform lane-changing maneuvers successfully and efficiently and with minimal impact on traffic flow in the target lane. For this purpose, this study utilizes the double deep Q-learning algorithm structure, which takes relevant traffic states as input and outputs the optimal actions (policy) for the automated vehicle. We put forward a realistic approach for dealing with this problem where, for instance, actions selected by the automated vehicle include steering angles and acceleration/deceleration values. We show that the RL agent is able to learn optimal policies for the different scenarios it encounters and performs the lane-changing task safely and efficiently. This work illustrates the potential of RL as a flexible framework for developing superior and more comprehensive lane-changing models that take into consideration multiple aspects of the road environment and seek to improve traffic flow as a whole.  more » « less
Award ID(s):
2047937
PAR ID:
10592033
Author(s) / Creator(s):
;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Volume:
2677
Issue:
2
ISSN:
0361-1981
Page Range / eLocation ID:
712 to 724
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Given the aging infrastructure and the anticipated growing number of highway work zones in the U.S.A., it is important to investigate work zone merge control, which is critical for improving work zone safety and capacity. This paper proposes and evaluates a novel highway work zone merge control strategy based on cooperative driving behavior enabled by artificial intelligence. The proposed method assumes that all vehicles are fully automated, connected, and cooperative. It inserts two metering zones in the open lane to make space for merging vehicles in the closed lane. In addition, each vehicle in the closed lane learns how to adjust its longitudinal position optimally to find a safe gap in the open lane using an off-policy soft actor critic reinforcement learning (RL) algorithm, considering its surrounding traffic conditions. The learning results are captured in convolutional neural networks and used to control individual vehicles in the testing phase. By adding the metering zones and taking the locations, speeds, and accelerations of surrounding vehicles into account, cooperation among vehicles is implicitly considered. This RL-based model is trained and evaluated using a microscopic traffic simulator. The results show that this cooperative RL-based merge control significantly outperforms popular strategies such as late merge and early merge in terms of both mobility and safety measures. It also performs better than a strategy assuming all vehicles are equipped with cooperative adaptive cruise control. 
    more » « less
  2. Connected and automated vehicles (CAVs) extend urban traffic control from temporal to spatiotemporal by enabling the control of CAV trajectories. Most of the existing studies on CAV trajectory planning only consider longitudinal behaviors (i.e., in-lane driving), or assume that the lane changing can be done instantaneously. The resultant CAV trajectories are not realistic and cannot be executed at the vehicle level. The aim of this paper is to propose a full trajectory planning model that considers both in-lane driving and lane changing maneuvers. The trajectory generation problem is modeled as an optimization problem and the cost function considers multiple driving features including safety, efficiency, and comfort. Ten features are selected in the cost function to capture both in-lane driving and lane changing behaviors. One major challenge in generating a trajectory that reflects certain driving policies is to balance the weights of different features in the cost function. To address this challenge, it is proposed to optimize the weights of the cost function by imitation learning. Maximum entropy inverse reinforcement learning is applied to obtain the optimal weight for each feature and then CAV trajectories are generated with the learned weights. Experiments using the Next Generation Simulation (NGSIM) dataset show that the generated trajectory is very close to the original trajectory with regard to the Euclidean distance displacement, with a mean average error of less than 1 m. Meanwhile, the generated trajectories can maintain safety gaps with surrounding vehicles and have comparable fuel consumption. 
    more » « less
  3. Reinforcement learning (RL) has been employed to devise the best course of actions in defending the critical infrastructures, such as power networks against cyberattacks. Nonetheless, even in the case of the smallest power grids, the action space of RL experiences exponential growth, rendering efficient exploration by the RL agent practically unattainable. The current RL algorithms tailored to power grids are generally not suited when the state-action space size becomes large, despite trade-offs. We address the large action-space problem for power grid security by exploiting temporal graph convolutional neural networks (TGCNs) to develop a parallel but heterogeneous RL framework. In particular, we divide the action space into smaller subspaces, each explored by an RL agent. How to efficiently organize the spatiotemporal action sequences then becomes a great challenge. We invoke TGCN to meet this challenge by accurately predicting the performance of each individual RL agent in the event of an attack. The top performing agent is selected, resulting in the optimal sequence of actions. First, we investigate the action-space size comparison for IEEE 5-bus and 14-bus systems. Furthermore, we use IEEE 14-bus and IEEE 118-bus systems coupled with the Grid2Op platform to illustrate the performance and action division influence on training times and grid survival rates using both deep Q-learning and Soft Actor Critic trained agents and Grid2Op default greedy agents. Our TGCN framework provides a computationally reasonable approach for generating the best course of actions to defend cyber physical systems against attacks. 
    more » « less
  4. Reinforcement learning (RL) is mechanized to learn from experience. It solves the problem in sequential decisions by optimizing reward-punishment through experimentation of the distinct actions in an environment. Unlike supervised learning models, RL lacks static input-output mappings and the objective of minimization of a vector error. However, to find out an optimal strategy, it is crucial to learn both continuous feedback from training data and the offline rules of the experiences with no explicit dependence on online samples. In this paper, we present a study of a multi-agent RL framework which involves a Critic in semi-offline mode criticizing over an online Actor-Critic network, namely, Critic-over-Actor-Critic (CoAC) model, in finding optimal treatment plan of ICU patients as well as optimal strategy in a combative battle game. For further validation, we also examine the model in the adversarial assignment. 
    more » « less
  5. This paper studies the problem of data-driven combined longitudinal and lateral control of autonomous vehicles (AVs) such that the AV can stay within a safe but minimum distance from its leading vehicle and, at the same time, in the lane. Most of the existing methods for combined longitudinal and lateral control are either model-based or developed by purely data-driven methods such as reinforcement learning. Traditional model-based control approaches are insufficient to address the adaptive optimal control design issue for AVs in dynamically changing environments and subject to model uncertainty. Moreover, the conventional reinforcement learning approaches require a large volume of data, and cannot guarantee the stability of the vehicle. These limitations are addressed by integrating the advanced control theory with reinforcement learning techniques. To be more specific, by utilizing adaptive dynamic programming techniques and using the motion data collected from the vehicles, a policy iteration algorithm is proposed such that the control policy is iteratively optimized in the absence of the precise knowledge of the AV’s dynamical model. Furthermore, the stability of the AV is guaranteed with the control policy generated at each iteration of the algorithm. The efficiency of the proposed approach is validated by SUMO simulation, a microscopic traffic simulation platform, for different traffic scenarios. 
    more » « less