Abstract Sixth-generation wireless networks will aggregate higher-than-ever mobile traffic into ultra-high capacity backhaul links, which could be deployed on the largely untapped spectrum above 100 GHz. Current regulations however prevent the allocation of large contiguous bands for communications at these frequencies, since several narrow bands are reserved to protect passive sensing services. These include radio astronomy and Earth exploration satellites using sensors that suffer from harmful interference from active transmitters. Here we show that active and passive spectrum sharing above 100 GHz is feasible by introducing and experimentally evaluating a real-time, dual-band backhaul prototype that tracks the presence of passive users (in this case the NASA satellite Aura) and avoids interference by automatically switching bands (123.5–140 GHz and 210–225 GHz). Our system enables wide-band transmissions in the above-100-GHz spectrum, while avoiding harmful interference to satellite systems, paving the way for innovative spectrum policy and technologies in these crucial bands.
more »
« less
This content will become publicly available on May 21, 2026
UNDERSTANDING THE IMPACT OF SATELLITES ON RADIO ASTRONOMY OBSERVATIONS
Radio telescopes observe extremely faint emission from astronomical objects, ranging from compact sources to large scale structures that can be seen across the whole sky. Satellites actively transmit at radio frequencies (particularly at 10±20 GHz, but usage of increasing broader frequency ranges are already planned for the future by satellite operators), and can appear as bright as the Sun in radio astronomy observations. Remote locations have historically enabled telescopes to avoid most interference, however this is no longer the case with dramatically increasing numbers of satellites that transmit everywhere on Earth. Even more remote locations such as the far side of the Moon may provide new radio astronomy observation opportunities, but only if they are protected from satellite transmissions. Improving our understanding of satellite transmissions on radio telescopes across the whole spectrum and beyond is urgently needed to overcome this new observational challenge, as part of ensuring the future access to dark and quiet skies. In this contribution we summarise the current status of observations of active satellites at radio frequencies, the implications for future astronomical observations, and the longer-term consequences of an increasing number of active satellites. This will include frequencies where satellites actively transmit, where they unintentionally also transmit, and considerations about thermal emission and other unintended emissions. This work is ongoing through the IAU CPS.
more »
« less
- Award ID(s):
- 2332736
- PAR ID:
- 10592090
- Editor(s):
- Lemmens, S; Flohrer, T; Schmitz, F
- Publisher / Repository:
- European Space Agency Space Debris Office
- Date Published:
- Volume:
- 9
- Issue:
- 1
- Subject(s) / Keyword(s):
- IAU CPS, Satellite Constellation, Satellite Brightness Mitigation, Radio Astronomy
- Format(s):
- Medium: X
- Location:
- https://conference.sdo.esoc.esa.int/proceedings/list
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Solar radio emission at low frequencies (<1 GHz) can provide valuable information on processes driving flares and coronal mass ejections (CMEs). Radio emission has been detected from active M dwarf stars, suggestive of much higher levels of activity than previously thought. Observations of active M dwarfs at low frequencies can provide information on the emission mechanism for high energy flares and possible stellar CMEs. Here, we conducted two observations with the Australian Square Kilometre Array Pathfinder Telescope totalling 26 h and scheduled to overlap with the Transiting Exoplanet Survey Satellite Sector 36 field, utilizing the wide fields of view of both telescopes to search for multiple M dwarfs. We detected variable radio emission in Stokes I centred at 888 MHz from four known active M dwarfs. Two of these sources were also detected with Stokes V circular polarization. When examining the detected radio emission characteristics, we were not able to distinguish between the models for either electron cyclotron maser or gyrosynchrotron emission. These detections add to the growing number of M dwarfs observed with variable low-frequency emission.more » « less
-
Demand for better quality, larger quantity, and size of astronomical telescopes from visible to radio frequencies is increasing. More rapid, efficient, and adaptable manufacturing processes are needed to support the needs of growing science and engineering communities in these fields. To aid the development and execution of these new processes, a flexible, accurate, and low-cost metrology system is needed. This paper outlines a variety of fringe projection profilometry (FPP) that has demonstrated high accuracy over large areas, making it a critical tool for manufacturing steel molds for forming primary reflectors and shape verification of the reflectors themselves used for radio astronomy.more » « less
-
There is insufficient wireless frequency spectrum to support the continued growth of active wireless technologies and devices. This has provoked extensive research on spectrum coexistence. One case that has gained limited attention in this course is using currently banned frequency bands for active wireless communications. One such option is the 27 MHz-wide narrowband portion of the L-band from 1.400 to 1.427 GHz, which is exclusively devoted to space-borne passive radiometry for remote sensing and radio astronomy. Radio regulations currently prohibit active wireless communications and radars from operating in this band to avoid radio frequency interference (RFI) on highly noise-sensitive passive radiometry equipment. The National Aeronautics and Space Administration’s (NASA’s) Soil Moisture Active Passive (SMAP) satellite is one of the latest space-borne remote sensing missions that evaluates global soil moisture by passive scanning of the thermal emissions of the earth in this frequency band. In this paper, we investigate the opportunistic temporal use of this 27 MHz-wide passive radiometry band for active wireless transmissions when there is no Line of Sight (LoS) between SMAP and a terrestrial wireless network. We use MATLAB simulations to determine the fraction of time that SMAP has LoS (and non-LoS) with a terrestrial wireless cell at different Earth latitudes based on SMAP’s orbital characteristics. We also investigate the severity of RFI induced on SMAP in the presence of a terrestrial cluster of 5G cells with LoS.more » « less
-
null (Ed.)ABSTRACT The most extreme active galactic nuclei are the radio active ones whose relativistic jet propagates close to our line of sight. These objects were first classified according to their emission-line features into flat-spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs). More recently, observations revealed a trend between these objects known as the blazar sequence, along with an anticorrelation between the observed power and the frequency of the synchrotron peak. In this work, we propose a fairly simple idea that could account for the whole blazar population: all jets are launched with similar energy per baryon, independently of their power. In the case of FSRQs, the most powerful jets manage to accelerate to high-bulk Lorentz factors, as observed in the radio. As a result, they have a rather modest magnetization in the emission region, resulting in magnetic reconnection injecting a steep particle–energy distribution and, consequently, steep emission spectra in the γ-rays. For the weaker jets, namely BL Lacs, the opposite holds true; i.e. the jet does not achieve a very high bulk Lorentz factor, leading to more magnetic energy available for non-thermal particle acceleration, and harder emission spectra at frequencies ≳ GeV. In this scenario, we recover all observable properties of blazars with our simulations, including the blazar sequence for models with mild baryon loading (50 ≲ μ ≲ 80). This interpretation of the blazar population therefore tightly constrains the energy per baryon of blazar jets regardless of their accretion rate.more » « less
An official website of the United States government
