Abstract Bulk sediment δ15N records from the eastern tropical Pacific (ETP) extending back to the last ice age most often show low glacial δ15N, then a deglacial δ15N maximum, followed by a gradual decline to a late Holocene δ15N that is typically higher than that of the Last Glacial Maximum (LGM). The lower δ15N of the LGM has been interpreted to reflect an ice age reduction in water column denitrification. We report foraminifera shell‐bound nitrogen isotope (FB‐δ15N) measurements for the two speciesNeogloboquadrina dutertreiandNeogloboquadrina incomptaover the last 35 ka in two sediment cores from the eastern equatorial Pacific (EEP), both of which have the typical LGM‐to‐Holocene increase in bulk sediment δ15N. FB‐δ15N contrasts with bulk sediment δ15N by not indicating a lower δ15N during the LGM. Instead, the FB‐δ15N records are dominated by a deglacial δ15N maximum, with comparable LGM and Holocene values. The lower LGM δ15N of the bulk sediment records may be an artifact, possibly related to greater exogenous N inputs and/or weaker sedimentary diagenesis during the LGM. The new data raise the possibility that the previously inferred glacial reduction in ETP water column denitrification was incorrect. A review of reconstructed ice age conditions and geochemical box model output provides mechanistic support for this possibility. However, equatorial ocean circulation and nitrate‐rich surface water overlying both core sites allow for other possible interpretations, calling for replication at non‐equatorial ETP sites.
more »
« less
This content will become publicly available on April 1, 2026
New controls on sedimentation and climate in the central equatorial Pacific Ocean
Abstract. The equatorial Pacific is a nexus of key oceanic and atmospheric phenomena, and its regional climate has critical implications for hydroclimate, the partitioning of CO2, and temperature on a global scale. The spatial complexity of climate signals across the basin has long posed a challenge for interpreting the interplay of different climate phenomena including changes in the Intertropical Convergence Zone (ITCZ) and El Niño–Southern Oscillation (ENSO). Here, we present new, millennially resolved sediment core chronologies and stable isotope records from three sites in the equatorial Pacific's Line Islands region, as well as updated chronologies for four previously studied cores. Age constraints are derived from 14C (n=17) and δ18O (n=610), which are used as inputs to a Bayesian software package (BIGMACS: Bayesian Inference Gaussian Process regression and Multiproxy Alignment of Continuous Signals) that constructs age models and uncertainty bounds via correlation with the global benthic δ18O stack (Lee et al., 2023). We also make use of the new planktonic δ18O data to draw inferences about surface water salinity and to infer a southward-shifted position for the ITCZ at the Last Glacial Maximum (18–24 ka) and Marine Isotope Stage 6 (138–144 ka). These new chronologies and related datasets improve our understanding of equatorial Pacific climate and show strong promise for further surface and deep ocean paleoclimate reconstructions over the last several glacial cycles.
more »
« less
- PAR ID:
- 10592147
- Publisher / Repository:
- European Geosciences Union
- Date Published:
- Journal Name:
- Geochronology
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2628-3719
- Page Range / eLocation ID:
- 123 to 138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
none (Ed.)Abstract The termination of the last glacial period is marked by the northward migration of the ITCZ and the weakening of the South American Summer Monsoon (SASM). The transition between the wetter glacial period and the more arid Holocene period across the South American continent is punctuated by several abrupt millennial-scale tropical hydroclimatic events. While the Northern Hemisphere temperature forcing of these millennial-scale events is generally accepted, recently, equatorial forcing mechanisms have been put forward. In particular, the dipole between northeastern Brazil and the western Andes of Peru is absent during Heinrich 1, with wet conditions recorded in both regions. To explain this anomalous atmospheric behavior, researchers have suggested changes in the ENSO and Walker circulation over South America and questioned whether the ‘amount effect’ relationship between δ18O and precipitation persists through time. To better resolve tropical hydroclimate changes over the last glacial termination, more robust paleoclimate proxies are needed. Here, we present a new paleo-precipitation reconstruction based on trace metal (Mg/Ca, Sr/Ca, and Ba/Ca) and isotope (δ18O and δ13C) speleothem records from Antipayarguna cave in the Peruvian Andes (3800 masl). Our records date from 2,600 to 4,700 and 7,700 to 19,000 years BP, with an average age resolution of 44 years. These records overlap the previously published speleothem records from nearby Pacupahuain and Huagapo caves. The Antipayarguna δ18O data are highly correlated with southern hemisphere summer insolation and the Huascaran ice core δ18O record. The Antipayarguna trace metal ratios and δ18O isotope values correlate well over most of the record, suggesting that the δ18O at our site reflects the amount of local precipitation. However, at the end of the Younger Dryas (11.5-10.3 ka) and Heinrich Stadial 1 (16.4-14.9 ka), there is a decoupling of these proxies. These anomalies may be due to changes in δ18O caused by shifts in moisture source region or precipitation condensation factors (e.g. convergence level or subcloud evaporation). Alternatively, this could be due to a change in trace metal sources. We explore potential causes for these brief decoupling events through comparison with other paleoclimate records.more » « less
-
Abstract During the last deglaciation Earth’s climate experienced strong and abrupt variations, resulting in major changes in global temperature, sea level, and ocean circulation. Although proxy records have significantly improved our understanding of climate during this period, questions remain regarding the connection between ocean circulation evolution and resulting geotracer distributions, including those of deep waters in the Pacific. Here we use the C‐iTRACE simulation, a transient ocean‐only, isotope‐enabled version of the Community Earth System Model, to better understand deglacial deep Pacific radiocarbon evolution in the context of circulation and reservoir age changes. Throughout the deglaciation, the Pacific Ocean circulation in C‐iTRACE responds strongly to glacial meltwater forcing, leading to large changes in deep Pacific Δ14C age. A multi‐millennial weakening of the overturning circulation from 20 to 15 ka BP leads to increases in deep Pacific Δ14C ages, but from 20 to 18 ka BP, nearly half (40%–60%) of this aging is controlled by changing surface reservoir age, corroborating previous studies showing that Δ14C is not solely a circulation age tracer. As the deglaciation proceeds, circulation change controls progressively more of the Δ14C age, accounting for more than 75% of it across the deep Pacific from 15 to 8 ka BP.more » « less
-
Recent research has found that the subsiding Sunda Shelf (Southeast Asia) was permanently exposed prior to ca. 400 ka with initial submersion-exposure cyclicity, associated with interglacial-glacial sea-level cycles, beginning between 400 and 240 ka. We analyzed the impact submersion-exposure cycles on regional environment and climate through a 640 k.y. leaf-wax carbon isotope (δ13Cwax) reconstruction at Andaman Sea Site U1448, representing relative changes in C3/C4 plant abundances. Prior to ca. 250 ka, the Sunda region was inhabited by a stable C3 (forest) biome, after which submersion-exposure cycles initiated with the deglacial sea-level rise at ca. 250 ka. During subsequent glacial-age sea-level drops, the newly exposed shelf was rapidly colonized by C4 grasses, followed by slow transitions back to C3 forests, representing a tenfold increase in the variability of C3/C4 vegetation in the Sunda region. The C3/C4 regime shift since 250 ka is coherent across the Southeast (SE) Asia peninsula and Sunda Shelf and is coincident with a shift in the east-west sea-surface temperature gradient in the equatorial Pacific Ocean. We hypothesize that the expansion of C4 grasslands promoted and sustained drier glacial-age climates over SE Asia via a feedback mechanism that contributed to weakening the ascending branch of the east-west atmospheric circulation in the equatorial Pacific region known as the Walker Circulation. Our results indicate that the Sunda Shelf region has a larger influence on Walker Circulation than is seen in current paleoclimate simulations.more » « less
-
Abstract Proxy evidences suggest abrupt southward displacements of the intertropical convergence zone (ITCZ) during Heinrich Stadial 1 (HS1) and Younger Dryas (YD) against a long‐term trend of northward ITCZ migration from Last Glacial Maximum to modern climate. Climate model simulations reveal that the abrupt ITCZ changes in HS1 and YD are mainly driven by ice‐sheet‐induced meltwater while the long‐term ITCZ trend primarily results from orbital variations, rising atmospheric greenhouse gases and ice‐sheet retreats during the last deglaciation. Atmospheric energetics analysis elucidates two important processes driven by meltwater—less net radiation entering the top‐of‐atmosphere (TOA) in the Northern Hemisphere than the Southern Hemisphere and a reduced global cross‐equatorial oceanic heat transport from the compensation between Atlantic and Indo‐Pacific heat transports—induce the southward ITCZ shift during HS1. Ice sheet extent changes also create a large interhemispheric TOA radiation asymmetry during HS1, which, however, is not via the surface albedo feedback.more » « less
An official website of the United States government
