Incubation is a crucial part of the avian life cycle; eggs must be kept warm enough for embryos to develop. As egg temperatures drop rapidly when not being actively incubated, birds must balance the thermal requirements of their developing offspring with their own energy requirements when deciding to make a feeding trip. Incubation behavior can vary with ambient temperature, and across the breeding cycle. Here, we examine the incubation behavior of black-capped (Poecile atricapillus) and mountain (P. gambeli) chickadees where they live together in the Front Range of the Colorado Rocky Mountains. We deployed iButton temperature monitors in and around chickadee nests to record nest and ambient temperatures during the incubation period. For each deployment, we visually inspected temperature data to determine whether incubation was detected. For each deployment in which incubation was detected we quantified incubation behavior using the incR R package. Across the four nests for which incubation was detected, females (the incubating sex) spent about 85% of the day incubating, and left the nest about 32 times per day for an average of 6.7 minutes. On average, nest temperatures were maintained around 35˚C.
more »
« less
This content will become publicly available on February 27, 2026
Respiratory challenges and oedema development in zebra finch embryos under reduced pore area
Global warming is one of the primary drivers of habitat loss and population decline in numerous species, including birds, amphibians and marine life. Avian embryos exhibit ectothermic phenotypes during most of their incubation period and are also vulnerable to rising temperatures when parents cannot cool the nests. This vulnerability stems from their unique respiratory mechanisms, which utilize eggshell pores to exchange respiratory gases. The number of pores is fixed at oviposition, and embryos may experience hypoxia during later developmental stages, especially when exposed to elevated ambient/incubation temperatures. Our preliminary study on zebra finch (Taeniopygia guttata castanotis) embryos, where we covered 30% of the shell surface with beeswax and incubated at high (38.9°C) temperature, revealed that half of the individuals that failed to hatch had developed oedema in the hind neck region. This study shows that such physical anomalies occur during incubation prior to death. We found that embryos with oedema had a higher head-to-body ratio, independent of their relative brain mass. Furthermore, oedema formation was correlated with darker-coloured hearts, suggesting reduced blood oxygenation in these embryos. These results highlight the physiological challenges embryos face under suboptimal incubation conditions. This article is part of the theme issue ‘The biology of the avian respiratory system’.
more »
« less
- PAR ID:
- 10592192
- Publisher / Repository:
- The Royal Society Publishing
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 380
- Issue:
- 1920
- ISSN:
- 0962-8436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A major driver of wildlife responses to climate change will include non-genomic effects, like those mediated through parental behavior and physiology (i.e., parental effects). Parental effects can influence lifetime reproductive success and survival, and thus population-level processes. However, the extent to which parental effects will contribute to population persistence or declines in response to climate change is not well understood. These effects may be substantial for species that exhibit extensive parental care behaviors, like birds. Environmental temperature is important in shaping avian incubation behavior, and these factors interact to determine the thermal conditions embryos are exposed to during development, and subsequently avian phenotypes and secondary sex ratios. In this article, we argue that incubation behavior may be an important mediator of avian responses to climate change, we compare incubation strategies of two species adapted to different thermal environments nesting in extreme heat, and we present a simple model that estimates changes in egg temperature based on these incubation patterns and predicted increases in maximum daily air temperature. We demonstrate that the predicted increase in air temperature by 2100 in the central USA will increase temperatures that eggs experience during afternoon off-bouts and the proportion of nests exposed to lethal temperatures. To better understand how species and local adaptations and behavioral-plasticity of incubation behavior will contribute to population responses to climate change comparisons are needed across more avian populations, species, and thermal landscapes.more » « less
-
Anthropogenic climate change is projected to affect marine ecosystems by challenging the environmental tolerance of individuals. Marine fishes may be particularly vulnerable to emergent climate stressors during early life stages. Here we focus on embryos of Pacific herring(Clupea pallasii), an important forage fish species widely distributed across the North Pacific. Embryos were reared under a range of temperatures (10-16°C) crossed with twopCO2levels (600 and 2000μatm) to investigate effects on metabolism and survival. We further tested how elevatedpCO2affects critical thermal tolerance (CTmax) by challenging embryos to short-term temperature fluctuations. Experiments were repeated on embryos collected from winter and spring spawning populations to determine if spawning phenology corresponds with different limits of environmental tolerance in offspring. We found that embryos could withstand acute exposure to 20°C regardless of spawning population or incubation treatment, but that survival was greatly reduced after 2-3 hours at 25°C. We found thatpCO2had limited effects onCTmax. The survival of embryos reared under chronically warm conditions (12°, 14°, or 16°C) was significantly lower relative to 10°C treatments in both populations. Oxygen consumption rates (MO2) were also higher at elevated temperatures andpCO2levels. However, heart contraction measurements made 48 hours afterCTmaxexposure revealed a greater increase in heart rate in embryos reared at 10°C compared to 16°C, suggesting acclimation at higher incubation temperatures. Our results indicate that Pacific herring are generally tolerant ofpCO2but are vulnerable to acute temperature stress. Importantly, spring-spawning embryos did not clearly exhibit a higher tolerance to heat stress compared to winter offspring.more » « less
-
Characterizing how organisms respond to transient temperatures may further our understanding of their susceptibility to climate change. Past studies in the freshwater turtle,Trachemys scripta, have demonstrated that the timing and duration of heat waves can have major implications for the response of genes involved in gonadal development and the production of female hatchlings. Yet, no study has considered how the response of these genes to transient cold snap exposure may affect gonadal development and the production of males. We investigated how cold snap timing affects gonadal gene expression inT. scriptaembryos and how the duration of an early cold snap influences the resulting hatchling sex ratios. Results show that responsiveness to cold changes rapidly across development, such that genes that responded when exposure began on incubation day 14 responded differently when exposure occurred just four or eight days later. Sex ratio data revealed that embryos experiencing an early cold snap also require a long exposure (>20 days) before most commit to testis development, suggesting that warm baseline temperatures may lower their sensitivity to later cold snap exposures. These results highlight how individual responses to incubation temperature can change rapidly across development in turtles and have important effects on sex ratios.more » « less
-
null (Ed.)As global land surfaces are being converted to urban areas at an alarming rate, understanding how individuals respond to urbanization is a key focus for behavioral ecology. As a critical component of avian parental care, incubating adults face a tradeoff between maintaining an optimal thermal environment for the developing embryos while meeting their own energetic demands. Urban habitats are biotically and abiotically different from their rural counterparts, i.e ., in food availability, predator compositions, and the thermal environment. Therefore, urban birds may face different incubation challenges than their natural counterparts. We measured incubation behavior of rural and urban house wrens, Troglodytes aedon , with temperature loggers throughout the 12-day period. We found that urban females had more incubation bouts of shorter duration and spent less total time incubating per day than rural females. Results could provide evidence of behavioral shifts of wrens in cities, which have implications for the evolution of parental care. Our findings contribute to our understanding of the behavioral traits needed for city life and possible environmental pressures driving urban adaptations.more » « less
An official website of the United States government
