Abstract Active restoration often aims to accelerate ecosystem recovery. However, active restoration may not be worthwhile if its effects are overwhelmed by changes that occur passively. Moreover, it can be challenging to separate the effects of passive processes, such as dispersal and natural succession, from active restoration efforts.We assess the 24‐year impact of actively restoring a Minnesota old‐field grassland via seed addition of native tallgrass prairie species. We compared the abundance of four functional plant groups in actively restored plots against abundances in three reference classes: (1) unrestored plots undergoing passive recovery within the same old field, (2) passively recovering plots in two nearby old fields of similar age and (3) a chronosequence of 21 old fields within the same landscape.Active restoration led to a higher abundance of native grasses and forbs in the 36 m2treatment plots. Seed addition was more effective if the original vegetation was first removed using herbicide, burning and tilling. However, long‐term conclusions about the efficacy of active restoration varied widely depending on the choice of reference class.In our small‐scale restoration experiment, native abundance was similarly high in both the actively restored and reference plots after 24 years, suggesting either (1) passive recovery or (2) local dispersal of native species from nearby treatment plots (i.e. cross‐contamination). In contrast, a comparison with two nearby reference fields suggested active restoration resulted in much higher native abundance relative to passive recovery. A smaller, positive effect was detected when we compared actively restored plots to the chronosequence of old fields. In the chronosequence, many passively recovering old fields had transitioned to native grass dominance naturally, although active restoration appeared to increase native forb abundance.Synthesis and applications: Our findings highlight the importance of using scale‐appropriate references for assessing the efficacy and need for active restoration. Comparing actively restored plots with the surrounding landscape, we found that active restoration and passive recovery led to similar plant communities after 24 years. Because local dispersal from actively restored sites can nearby references, caution should be exercised when evaluating long‐term restoration projects using only small‐scale experiments.
more »
« less
Propagating observation errors to enable scalable and rigorous enumeration of plant population abundance with aerial imagery
Abstract Estimating and monitoring plant population size is fundamental for ecological research, as well as conservation and restoration programs. High‐resolution imagery has potential to facilitate such estimation and monitoring. However, remotely sensed estimates typically have higher uncertainty than field measurements, risking biased inference on population status.We present a model that accounts for false negative (missed plants) and false positive (misclassified or double‐counted plants) error in counts from high‐resolution imagery via integration with ground data. We apply it to estimate the abundance of a foundational shrub species in post‐wildfire landscapes in the western United States. In these landscapes, plant recruitment is crucial for ecological recovery but locally patchy, motivating the use of spatially extensive measurements from unoccupied aerial systems (UAS). Integrating >16 ha of UAS imagery with >700 georeferenced field plots, we fit our model to generate insights into the prevalence and drivers of observation errors associated with classification algorithms used to distinguish individual plants, relationships between abundance and landscape context, and to generate spatially explicit maps of shrub abundance.Raw counts of plant abundance in high‐resolution imagery resulted in substantial false negative and false positive observation errors. The probability of detecting (p) adult plants (0.25 m tall) varied between sites within 0.52 < < 0.82, whereas the detection of smaller plants (<0.25 m) was lower, 0.03 < < 0.3. On average, we estimate that 19% of all detected plants were false positive errors, which varied spatially in relation to topographic predictors. Abundance declined toward the interior of previous wildfires and was positively associated with terrain roughness.Our study demonstrates that integrated models accounting for imperfect detection improve estimates of plant population abundance derived from inherently imperfect UAS imagery. We believe such models will further improve inference on plant population dynamics—relevant to restoration, wildlife habitat and related objectives—and echo previous calls for remote sensing applications to better differentiate between ecological and observational processes.
more »
« less
- Award ID(s):
- 2207158
- PAR ID:
- 10592213
- Publisher / Repository:
- Methods in Ecology and Evolution
- Date Published:
- Journal Name:
- Methods in Ecology and Evolution
- Volume:
- 15
- Issue:
- 11
- ISSN:
- 2041-210X
- Page Range / eLocation ID:
- 2074 to 2086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Jianguo, Wu (Ed.)Abstract ContextDynamic feedbacks between physical structure and ecological function drive ecosystem productivity, resilience, and biodiversity maintenance. Detailed maps of canopy structure enable comprehensive evaluations of structure–function relationships. However, these relationships are scale-dependent, and identifying relevant spatial scales to link structure to function remains challenging. ObjectivesWe identified optimal scales to relate structure heterogeneity to ecological resistance, measured as the impacts of wildfire on canopy structure, and ecological resilience, measured as native shrub recruitment. We further investigated whether structural heterogeneity can aid spatial predictions of shrub recruitment. MethodsUsing high-resolution imagery from unoccupied aerial systems (UAS), we mapped structural heterogeneity across ten semi-arid landscapes, undergoing a disturbance-mediated regime shift from native shrubland to dominance by invasive annual grasses. We then applied wavelet analysis to decompose structural heterogeneity into discrete scales and related these scales to ecological metrics of resilience and resistance. ResultsWe found strong indicators of scale dependence in the tested relationships. Wildfire effects were most prominent at a single scale of structural heterogeneity (2.34 m), while the abundance of shrub recruits was sensitive to structural heterogeneity at a range of scales, from 0.07 – 2.34 m. Structural heterogeneity enabled out-of-site predictions of shrub recruitment (R2 = 0.55). The best-performing predictive model included structural heterogeneity metrics across multiple scales. ConclusionsOur results demonstrate that identifying structure–function relationships requires analyses that explicitly account for spatial scale. As high-resolution imagery enables spatially extensive maps of canopy heterogeneity, models for scale dependence will aid our understanding of resilience mechanisms in imperiled arid ecosystems.more » « less
-
Abstract Little is known about the tolerances of mammalian herbivores to plant specialized metabolites across landscapes.We investigated the tolerances of two species of herbivorous woodrats,Neotoma lepida(desert woodrat) andNeotoma bryanti(Bryant's woodrat) to creosote bushLarrea tridentata, a widely distributed shrub with a highly toxic resin. Woodrats were sampled from 13 locations both with and without creosote bush across a 900 km transect in the US southwest. We tested whether these woodrat populations consume creosote bush using plant metabarcoding of faeces and quantified their tolerance to creosote bush through feeding trials using chow amended with creosote resin.Toxin tolerance was analysed in the context of population structure across collection sites with microsatellite analyses. Genetic differentiation among woodrats collected from different locations was minimal within either species. Tolerance differed substantially between the two species, withN. lepidapersisting 20% longer thanN. bryantiin feeding trials with creosote resin. Furthermore, in both species, tolerance to creosote resin was similar among woodrats near or within creosote bush habitat. In both species, woodrats collected >25 km from creosote had markedly lower tolerances to creosote resin compared to animals from within the range of creosote bush.The results imply that mammalian herbivores are adapted to the specialized metabolites of plants in their diet, and that this tolerance can extend several kilometres outside of the range of dietary items. That is, direct ecological exposure to the specialized chemistry of particular plant species is not a prerequisite for tolerance to these compounds. These findings lay the groundwork for additional studies to investigate the genetic mechanisms underlying toxin tolerance and to identify how these mechanisms are maintained across landscape‐level scales in mammalian herbivores. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Ecological restoration is beneficial to ecological communities in this era of large‐scale landscape change and ecological disruption. However, restoration outcomes are notoriously variable, which makes fine‐scale decision‐making challenging. This is true for restoration efforts that follow large fires, which are increasingly common as the climate changes.Post‐fire restoration efforts, like tree planting and seeding have shown mixed success, though the causes of the variation in restoration outcomes remain unclear. Abiotic factors such as elevation and fire severity, as well as biotic factors, such as residual canopy cover and abundance of competitive understorey grasses, can vary across a burned area and may all influence the success of restoration efforts to re‐establish trees following forest fires.We examined the effect of these factors on the early seedling establishment of a tree species—māmane (Sophora chrysophylla)—in a subtropical montane woodland in Hawaiʻi. Following a human‐caused wildfire, we sowed seeds of māmane as part of a restoration effort. We co‐designed a project to examine māmane seedling establishment.We found that elevation was of overriding importance, structuring total levels of plant establishment, with fewer seedlings establishing at higher elevations. Residual canopy cover was positively correlated with seedling establishment, while cover by invasive, competitive understorey grasses very weakly positively correlated with increased seedling establishment.Our results point to specific factors structuring plant establishment following a large fire and suggest additional targeted restoration actions within this subtropical system. For example, if greater native woody recruitment is a management goal, then actions could include targeted seed placement at lower elevations where establishment is more likely, increased seeding densities at high elevation where recruitment rates are lower, and/or invasive grass removal prior to seeding. Such actions may result in faster native ecosystem recovery, which is a goal of local land managers.more » « less
-
Abstract ContextSoil resource heterogeneity drives plant species diversity patterns at local and landscape scales. In drylands, biocrusts are patchily distributed and contribute to soil resource heterogeneity important for plant establishment and growth. Yet, we have a limited understanding of how such heterogeneity may relate to patterns of plant diversity and community structure. ObjectivesWe explored relationships between biocrust-associated soil cover heterogeneity and plant diversity patterns in a cool desert ecosystem. We asked: (1) does biocrust-associated soil cover heterogeneity predict plant diversity and community composition? and (2) can we use high-resolution remote sensing data to calculate soil cover heterogeneity metrics that could be used to extrapolate these patterns across landscapes? MethodsWe tested associations among field-based measures of plant diversity and soil cover heterogeneity. We then used a Support Vector Machine classification to map soil, plant and biocrust cover from sub-centimeter resolution Unoccupied Aerial System (UAS) imagery and compared the mapped results to field-based measures. ResultsField-based soil cover heterogeneity and biocrust cover were positively associated with plant diversity and predicted community composition. The accuracy of UAS-mapped soil cover classes varied across sites due to variation in timing and quality of image collections, but the overall results suggest that UAS are a promising data source for generating detailed, spatially explicit soil cover heterogeneity metrics. ConclusionsResults improve understanding of relationships between biocrust-associated soil cover heterogeneity and plant diversity and highlight the promise of high-resolution UAS data to extrapolate these patterns over larger landscapes which could improve conservation planning and predictions of dryland responses to soil degradation under global change.more » « less
An official website of the United States government

