skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2207158

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ContextDynamic feedbacks between physical structure and ecological function drive ecosystem productivity, resilience, and biodiversity maintenance. Detailed maps of canopy structure enable comprehensive evaluations of structure–function relationships. However, these relationships are scale-dependent, and identifying relevant spatial scales to link structure to function remains challenging. ObjectivesWe identified optimal scales to relate structure heterogeneity to ecological resistance, measured as the impacts of wildfire on canopy structure, and ecological resilience, measured as native shrub recruitment. We further investigated whether structural heterogeneity can aid spatial predictions of shrub recruitment. MethodsUsing high-resolution imagery from unoccupied aerial systems (UAS), we mapped structural heterogeneity across ten semi-arid landscapes, undergoing a disturbance-mediated regime shift from native shrubland to dominance by invasive annual grasses. We then applied wavelet analysis to decompose structural heterogeneity into discrete scales and related these scales to ecological metrics of resilience and resistance. ResultsWe found strong indicators of scale dependence in the tested relationships. Wildfire effects were most prominent at a single scale of structural heterogeneity (2.34 m), while the abundance of shrub recruits was sensitive to structural heterogeneity at a range of scales, from 0.07 – 2.34 m. Structural heterogeneity enabled out-of-site predictions of shrub recruitment (R2 = 0.55). The best-performing predictive model included structural heterogeneity metrics across multiple scales. ConclusionsOur results demonstrate that identifying structure–function relationships requires analyses that explicitly account for spatial scale. As high-resolution imagery enables spatially extensive maps of canopy heterogeneity, models for scale dependence will aid our understanding of resilience mechanisms in imperiled arid ecosystems. 
    more » « less
  2. Abstract Estimating and monitoring plant population size is fundamental for ecological research, as well as conservation and restoration programs. High‐resolution imagery has potential to facilitate such estimation and monitoring. However, remotely sensed estimates typically have higher uncertainty than field measurements, risking biased inference on population status.We present a model that accounts for false negative (missed plants) and false positive (misclassified or double‐counted plants) error in counts from high‐resolution imagery via integration with ground data. We apply it to estimate the abundance of a foundational shrub species in post‐wildfire landscapes in the western United States. In these landscapes, plant recruitment is crucial for ecological recovery but locally patchy, motivating the use of spatially extensive measurements from unoccupied aerial systems (UAS). Integrating >16 ha of UAS imagery with >700 georeferenced field plots, we fit our model to generate insights into the prevalence and drivers of observation errors associated with classification algorithms used to distinguish individual plants, relationships between abundance and landscape context, and to generate spatially explicit maps of shrub abundance.Raw counts of plant abundance in high‐resolution imagery resulted in substantial false negative and false positive observation errors. The probability of detecting (p) adult plants (0.25 m tall) varied between sites within 0.52 <  < 0.82, whereas the detection of smaller plants (<0.25 m) was lower, 0.03 <  < 0.3. On average, we estimate that 19% of all detected plants were false positive errors, which varied spatially in relation to topographic predictors. Abundance declined toward the interior of previous wildfires and was positively associated with terrain roughness.Our study demonstrates that integrated models accounting for imperfect detection improve estimates of plant population abundance derived from inherently imperfect UAS imagery. We believe such models will further improve inference on plant population dynamics—relevant to restoration, wildlife habitat and related objectives—and echo previous calls for remote sensing applications to better differentiate between ecological and observational processes. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Abstract Understanding interactions between environmental stress and genetic variation is crucial to predict the adaptive capacity of species to climate change. Leaf temperature is both a driver and a responsive indicator of plant physiological response to thermal stress, and methods to monitor it are needed. Foliar temperatures vary across leaf to canopy scales and are influenced by genetic factors, challenging efforts to map and model this critical variable. Thermal imagery collected using unoccupied aerial systems (UAS) offers an innovative way to measure thermal variation in plants across landscapes at leaf‐level resolutions. We used a UAS equipped with a thermal camera to assess temperature variation among genetically distinct populations of big sagebrush (Artemisia tridentata), a keystone plant species that is the focus of intensive restoration efforts throughout much of western North America. We completed flights across a growing season in a sagebrush common garden to map leaf temperature relative to subspecies and cytotype, physiological phenotypes of plants, and summer heat stress. Our objectives were to (1) determine whether leaf‐level stomatal conductance corresponds with changes in crown temperature; (2) quantify genetic (i.e., subspecies and cytotype) contributions to variation in leaf and crown temperatures; and (3) identify how crown structure, solar radiation, and subspecies‐cytotype relate to leaf‐level temperature. When considered across the whole season, stomatal conductance was negatively, non‐linearly correlated with crown‐level temperature derived from UAS. Subspecies identity best explained crown‐level temperature with no difference observed between cytotypes. However, structural phenotypes and microclimate best explained leaf‐level temperature. These results show how fine‐scale thermal mapping can decouple the contribution of genetic, phenotypic, and microclimate factors on leaf temperature dynamics. As climate‐change‐induced heat stress becomes prevalent, thermal UAS represents a promising way to track plant phenotypes that emerge from gene‐by‐environment interactions. 
    more » « less
  4. Abstract The structure and composition of plant communities in drylands are highly variable across scales, from microsites to landscapes. Fine spatial resolution field surveys of dryland plants are essential to unravel the impact of climate change; however, traditional field data collection is challenging considering sampling efforts and costs. Unoccupied aerial systems (UAS) can alleviate this challenge by providing standardized measurements of plant community attributes with high resolution. However, given widespread heterogeneity in plant communities in drylands, and especially across environmental gradients, the transferability of UAS imagery protocols is unclear. Plant functional types (PFTs) are a classification scheme that aggregates the diversity of plant structure and function. We mapped and modeled PFTs and fractional photosynthetic cover using the same UAS imagery protocol across three dryland communities, differentiated by a landscape‐scale gradient of elevation and precipitation. We compared the accuracy of the UAS products between the three dryland sites. PFT classifications and modeled photosynthetic cover had highest accuracies at higher elevations (2241 m) with denser vegetation. The lowest site (1101 m), with more bare ground, had the least agreement with the field data. Notably, shrub cover was well predicted across the gradient of elevation and precipitation (~230–1100 mm/year). UAS surveys captured the heterogeneity of plant cover across sites and presented options to measure leaf‐level composition and structure at landscape levels. Our results demonstrate that some PFTs (i.e., shrubs) can readily be detected across sites using the same UAS imagery protocols, while others (i.e., grasses) may require site‐specific flight protocols for best accuracy. As UAS are increasingly used to monitor dryland vegetation, developing protocols that maximize information and efficiency is a research and management priority. 
    more » « less
  5. Large‐scale disturbances, such as megafires, motivate restoration at equally large extents. Measuring the survival and growth of individual plants plays a key role in current efforts to monitor restoration success. However, the scale of modern restoration (e.g., >10,000 ha) challenges measurements of demographic rates with field data. In this study, we demonstrate how unoccupied aerial system (UAS) flights can provide an efficient solution to the tradeoff of precision and spatial extent in detecting demographic rates from the air. We flew two, sequential UAS flights at two sagebrush (Artemisia tridentata) common gardens to measure the survival and growth of individual plants. The accuracy of Bayesian‐optimized segmentation of individual shrub canopies was high (73–95%, depending on the year and site), and remotely sensed survival estimates were within 10% of ground‐truthed survival censuses. Stand age structure affected remotely sensed estimates of growth; growth was overestimated relative to field‐based estimates by 57% in the first garden with older stands, but agreement was high in the second garden with younger stands. Further, younger stands (similar to those just after disturbance) with shorter, smaller plants were sometimes confused with other shrub species and bunchgrasses, demonstrating a need for integrating spectral classification approaches that are increasingly available on affordable UAS platforms. The older stand had several merged canopies, which led to an underestimation of abundance but did not bias remotely sensed survival estimates. Advances in segmentation and UAS structure from motion photogrammetry will enable demographic rate measurements at management‐relevant extents. 
    more » « less