skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ARCH-COMP24 Category Report: Artificial Intelligence and Neural Network Control Systems (AINNCS) for Continuous and Hybrid Systems Plants
This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as feedforward neural networks used as feedback controllers in closed-loop systems, are considered, which is a class of systems classically known as intelligent control systems, or in more modern and specific terms, neural network control systems (NNCS). We broadly refer to this category as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2024. In the 8th edition of this AINNCS category at ARCH-COMP, five tools have been applied to solve 12 benchmarks, which are CORA, CROWN-Reach, GoTube, JuliaReach, and NNV. This is the year with the largest interest in the community, with two new, and three previous participants. Following last year’s trend, despite the additional challenges presented, the verification results have improved year-over-year. In terms of computation time, we can observe that the previous participants have improved as well, showing speed-ups of up to one order of magnitude, such as JuliaReach on the TORA benchmark with ReLU controller, and NNV on the TORA benchmark with both heterogeneous controllers.  more » « less
Award ID(s):
2220426 2028001 2220401 1910017
PAR ID:
10592330
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Easychair
Date Published:
Page Range / eLocation ID:
64 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as feedforward neural networks used as feedback controllers in closed-loop systems are considered, which is a class of systems classically known as intelligent control systems, or in more modern and specific terms, neural network control systems (NNCS). We more broadly refer to this category as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2021. In the third edition of this AINNCS category at ARCH-COMP, three tools have been applied to solve seven different benchmark problems, (in alphabetical order): JuliaReach, NNV, and Verisig. JuliaReach is a new participant in this category, Verisig participated previously in 2019 and NNV has participated in all previous competitions. This report is a snapshot of the current landscape of tools and the types of benchmarks for which these tools are suited. Due to the diversity of problems, lack of a shared hardware platform, and the early stage of the competition, we are not ranking tools in terms of performance, yet the presented results combined with 2020 results probably provide the most complete assessment of current tools for safety verification of NNCS. 
    more » « less
  2. This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as feedforward neural networks used as feedback controllers in closed-loop systems are considered, which is a class of systems classically known as intelligent control systems, or in more modern and specific terms, neural network control systems (NNCS). We more broadly refer to this category as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2020. In the second edition of this AINNCS category at ARCH-COMP, four tools have been applied to solve seven different benchmark problems, (in alphabetical order): NNV, OVERT, ReachNN*, and VenMAS. This report is a snapshot of the current landscape of tools and the types of benchmarks for which these tools are suited. Due to the diversity of problems, lack of a shared hardware platform, and the early stage of the competition, we are not ranking tools in terms of performance, yet the presented results probably provide the most complete assessment of current tools for safety verification of NNCS. 
    more » « less
  3. This report presents the results of the repeatability evaluation for the 4th International Competition on Verifying Continuous and Hybrid Systems (ARCH-COMP’20). The competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2020, affiliated with the IFAC World Congress. In its fourth edition, twenty-eight tools submitted artifacts through a Git repository for the repeatability evaluation, applied to solve benchmark problems for seven competition categories. The majority of participants adhered to the requirements for this year’s repeatability evaluation, namely to submit scripts to automatically install and execute tools in containerized virtual environments (specifically Dockerfiles to execute within Docker), and several categories used performance evaluation information from a common execution platform. The repeatability results represent a snapshot of the current landscape of tools and the types of benchmarks for which they are particularly suited and for which others may repeat their analyses. Due to the diversity of problems in verification of continuous and hybrid systems, as well as basing on standard practice in repeatability evaluations, we evaluate the tools with pass and/or failing being repeatable. 
    more » « less
  4. This manuscript presents the updated version of the Neural Network Verification (NNV) tool. NNV is a formal verification software tool for deep learning models and cyber-physical systems with neural network components. NNV was first introduced as a verification framework for feedforward and convolutional neural networks, as well as for neural network control systems. Since then, numerous works have made significant improvements in the verification of new deep learning models, as well as tackling some of the scalability issues that may arise when verifying complex models. In this new version of NNV, we introduce verification support for multiple deep learning models, including neural ordinary differential equations, semantic segmentation networks and recurrent neural networks, as well as a collection of reachability methods that aim to reduce the computation cost of reachability analysis of complex neural networks. We have also added direct support for standard input verification formats in the community such as VNNLIB (verification properties), and ONNX (neural networks) formats. We present a collection of experiments in which NNV verifies safety and robustness properties of feedforward, convolutional, semantic segmentation and recurrent neural networks, as well as neural ordinary differential equations and neural network control systems. Furthermore, we demonstrate the capabilities of NNV against a commercially available product in a collection of benchmarks from control systems, semantic segmentation, image classification, and time-series data. 
    more » « less
  5. This paper presents Verisig, a hybrid system approach to verifying safety properties of closed-loop systems using neural networks as controllers. We focus on sigmoid-based networks and exploit the fact that the sigmoid is the solution to a quadratic differential equation, which allows us to transform the neural network into an equivalent hybrid system. By composing the network's hybrid system with the plant's, we transform the problem into a hybrid system verification problem which can be solved using state-of-the-art reachability tools. We show that reachability is decidable for networks with one hidden layer and decidable for general networks if Schanuel's conjecture is true. We evaluate the applicability and scalability of Verisig in two case studies, one from reinforcement learning and one in which the neural network is used to approximate a model predictive controller. 
    more » « less